Li, Ziyan and Elsworth, Derek and Wang, Chaoyi (2022) Induced microearthquakes predict permeability creation in the brittle crust. Frontiers in Earth Science, 10. ISSN 2296-6463
pubmed-zip/versions/3/package-entries/feart-10-1020294-r2/feart-10-1020294.pdf - Published Version
Download (5MB)
Abstract
Predicting the evolution of permeability accurately during stimulation at the reservoir scale and at the resolution of individual fractures is essential to characterize the fluid transport and the reactive/heat-transfer characteristics of reservoirs where stress exerts significant control. Here, we develop a hybrid machine learning (ML) model to visualize in situ permeability evolution for an intermediate-scale (∼10 m) hydraulic stimulation experiment. This model includes an ML model that was trained using the well history of flow rate and wellhead pressure and MEQ data from the first three stimulation episodes to predict average permeability from the statistical features of the MEQs alone for later episodes. Moreover, a physics-inspired model is integrated to estimate in situ fracture permeability spatially. This method relates fracture permeability to fracture dilation and scales dilation to the equivalent MEQ magnitude, according to laboratory observations. The seismic data are then applied to define incremental changes in permeability in both space and time. Our results confirm the excellent agreement between the ground truth and model-predicted permeability evolution. The resulting permeability map defines and quantifies flow paths in the reservoir with the averaged permeability comparing favorably with the ground truth of permeability.
Item Type: | Article |
---|---|
Subjects: | STM One > Geological Science |
Depositing User: | Unnamed user with email support@stmone.org |
Date Deposited: | 21 Feb 2023 08:14 |
Last Modified: | 29 Jul 2024 10:58 |
URI: | http://publications.openuniversitystm.com/id/eprint/350 |