Synthesis and Properties of Organic-Inorganic Hybrid Porous Polymers Obtained with Click Addition Reactions of Thiol-Functionalized Random Type Silsesquioxane by and Diacrylate or Diisocyanate Compounds

Miyanaga, Tomoharu and Naga, Naofumi (2020) Synthesis and Properties of Organic-Inorganic Hybrid Porous Polymers Obtained with Click Addition Reactions of Thiol-Functionalized Random Type Silsesquioxane by and Diacrylate or Diisocyanate Compounds. Open Journal of Polymer Chemistry, 10 (01). pp. 1-20. ISSN 2165-6681

[thumbnail of ojpchem_2020071614510017.pdf] Text
ojpchem_2020071614510017.pdf - Published Version

Download (2MB)

Abstract

Organic-inorganic hybrid network polymers have been synthesized by addition reaction of a thiol-functionalized random type silsesquioxane (SQ109) and alkyl diacrylate or diisocyanate compounds. Thiol-ene reaction of SQ109 and 1,4-butanediol diacrylate (BDA) successfully yield porous polymer in toluene initiated by azobis(isobutyronitrile) (AIBN) at 60°C. Morphology of the porous polymers was composed by connected globules, and the diameter of the globules decreased with increasing in the monomer concentration of the reaction system. By contrast, the reaction with 1,6-hexanediol diacrylate or 1,5-hexadiene yielded homogeneous clear gels. Thermal analyses of SQ109-BDA porous polymers indicated that thermal degradation of ester groups of BDA in the polymer network occurred at around 300°C. The porous polymer was also obtained by the reaction using a photo-initiator (Irugacure184) at room temperature, and showed higher Young’s modulus than the corresponding porous polymer obtained with the reaction with AIBN due to the small size of the globules. Young’s modulus of SQ109-BDA porous polymer increased with increasing in the monomer concentration of the reaction systems. Thiolisocyanate addition reactions between SQ109 and hexamethylene diisocyanate (HDI) or methylenediphenyl 4,4’-diisocyanate (MDI) were investigated to obtain network polymers. The reactions in toluene yielded the corresponding homogeneous clear gels. By contrast the reactions in a mixed solvent of toluene (50 vol.%) and N,N-dimethylformamide (50 vol.%) produced porous polymers. The morphology of the porous polymers was composed by connected globules or aggregated particles. The size of globules and particles in the SQ109-HDI porous polymers was larger than those in the SQ109-MDI porous polymers. Thermal degradation of SQ109-HDI and SQ109-MDI porous polymers started at round 260°C and showed endothermic peak at around 350°C derived from degradation of thio-urethane bond.

Item Type: Article
Subjects: STM One > Chemical Science
Depositing User: Unnamed user with email support@stmone.org
Date Deposited: 23 Jun 2023 06:11
Last Modified: 05 Jun 2024 10:07
URI: http://publications.openuniversitystm.com/id/eprint/1474

Actions (login required)

View Item
View Item