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Abstract 
 

This paper studies a prominent class of recursively-defined combinatorial functions, namely, the binomial 
and multinomial coefficients and probabilities. The paper reviews the basic notions and mathematical 
definitions of these four functions. Subsequently, it characterizes each of these functions via a recursive 
relation that is valid over a certain two-dimensional or multi-dimensional region and is supplemented 
with certain boundary conditions. Visual interpretations of these characterizations are given in terms of 
regular acyclic signal flow graphs. The graph for the binomial coefficients resembles a Pascal Triangle, 
while that for trinomial or multinomial coefficients looks like a Pascal Pyramid, Tetrahedron, or Hyper-
Pyramid. Each of the four functions is computed using both its conventional and recursive definitions. 
Moreover, the recursive structures of the binomial coefficient and the corresponding probability are 
utilized in an iterative scheme, which is substantially more efficient than the conventional or recursive 
evaluation. Analogous iterative evaluations of the multinomial coefficient and probability can be 
constructed similarly. Applications to the reliability evaluation for two-valued and multi-valued k-out-of-
n systems are also pointed out.  

Original Research Article 
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1 Introduction  
 
Many combinatorial functions can be characterized by a general framework based on simple two-
dimensional or multi-dimensional recursion [1-19]. Four prominent cases among these combinatorial 
functions are the functions of binomial coefficients [6,10,15,20-22] and binomial probabilities 
[1,6,10,23,24], as well as their extensions to multinomial coefficients [21,22,25-32] and multinomial 
probabilities [21,22,33,34]. 
 
This paper reviews the basic notions and concepts of the aforementioned four combinatorial functions. It 
points out that computing any of them (via conventional methods involving factorials) has exponential 
temporal complexity. The paper explores the recursive structure for each of these functions with an eye of 
constructing more efficient iterative computational methods, which could possibly be of a polynomial (sub-
exponential) rather than exponential temporal complexity. 
 
We follow the technique introduced by Rushdi [1,6,10] of characterizing a recursively-defined function via 
three entities, viz., (a) a recursive relation, (b) a region of validity for the recurrence, and (c) boundary 
conditions. We provide pictorial insight into these entities through the use of (Mason) linear signal flow 
graphs (SFGs) [35-37], which turn out to be regular and acyclic or loopless. Linear signal flow graphs are 
very useful in representing and manipulating linear relations in a wide variety of scientific and engineering 
applications [6,10,37-42]. The SFG for the binomial coefficient is simply a Pascal Triangle (also known as 
al-Karkhi Triangle or al-Khayyam Triangle) [21,22,43-48], while the SFG for the multinomial coefficients is 
a Pascal Pyramid or a Pascal Hyper-pyramid [49-56].   
 
The topics of binomial coefficients and binomial probabilities, and their associated topics of k-out-of–n 
system reliability and unreliability have been extensively studied before [1,6,10,15,20-24]. They are 
included herein to make the paper self-contained and to facilitate the extension to the topics of multinomial 
coefficients and multinomial probabilities, and subsequently to the associated topics of multi-valued k-out-
of-n system reliability and unreliability. 
 
The organization of the remainder of this paper is as follows. Section 2 introduces binomial coefficients and 
probabilities and shows that their recurrences are represented by signal flow graphs that resemble Pascal 
Triangles. Section 3 presents and exposes the concept and conventional computational methods for the 
multinomial coefficients and probabilities. Subsequently, Sections 4 and 5 introduce recurrences for 
multinomial coefficients and multinomial probabilities, respectively, and show how such recurrences are 
represented via Pascal Pyramids or Hyper-pyramids. Section 6 makes a quick comparison of iteration versus 
recursion, with a stress on the utility of both techniques in the computation of the four functions considered 
herein. Section 7 concludes the paper. 
 

2 Binomial Coefficients and Binomial Probabilities 
 
In a (conventional) Bernoulli trial, one of two distinct outcomes might result. These two outcomes are 
typically called success and failure, and their probabilities are assumed to be constant, and denoted by p and 
q, respectively. The number of k successes in n independent trials is called the binomial (combinatorial) 
coefficient, and is given by [21-24] 
 

�(�, �) =
�!

�! (���)! 
=  ∏  �

�����

�
���� (�,   ���)

��� .                                                                                 (1) 

 
The binomial coefficient �(�, �) also expresses the number of ways of selecting � objects out of � objects, 
when repetition (replacement) is not allowed and order does not matter. In particular, �(�, �) denotes the 
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number of subsets with k elements among the subsets of a set on n elements. The binomial coefficient 
satisfies the recursive relation [6,15,21,22]. 
 

�(�, �) = �(�, � − 1) + �(� − 1, � − 1),   0 < � < �,                                                                 (2) 
 

subject to the boundary conditions 
 

�(�, �) = 1         ��� (� = 0 �� � = �)         ���  � ≥ 0.                                                               (3) 
 

Fig. 1 is a Signal Flow Graph (SFG) representing the computation of �(�, �) via (2) and (3). To facilitate 
comparison with the multinomial case, we use a Cartesian grid (�1, �2) where (�1 ≥  0, �2 ≥  0) to represent 
�(�, �) as �(�1,  �1+ �2) where �1 = � and �2 = � − �. Fig. 1 is traditionally referred to as Pascal Triangle 
(albeit it is also known by many other names such as al-Karkhi Triangle or al-Khayyam Triangle [57,58]). 
This triangle occupies an octant of the � − � plane or the �1− �2 plane. It extends without bound as � goes to 
infinity, but it is otherwise perfectly bounded by the two straight arrows given in (3), viz., (� = 0, � ≥ 0) 
and (� = �, � ≥ 0). 
 

 
 

Fig. 1. Two Dimensional Signal Flow Graph for computing the binomial coefficients � (�1, �1+ �2). If 
only the top left triangular half of the shown square is retained, the figure becomes a Pascal Triangle 
(also called al-Karkhi Triangle or al-Khayyam Triangle).  The value of a non-source node at (�1,  �2) 
is � (�1, �1+ �2) and equals the number of paths from source (black) nodes to this node. For example, 
the non-source nodes in the rightmost column shown are � (�, �) = �, � (�, �) = ��, � (�, �) = ��, 

� (�, �) = ���, and � (�, ��) = ��� 
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For convenience, and to maintain symmetry, equations (1)-(3) are rewritten as: 
 

�(�1, �1+ �2) = (�1+ �2)!/ (�1! �2!),                                                                                                (1a) 
 
�(�1, �1+ �2) = �(��, �� + �� − 1) + � ( �� − 1, �� + �� − 1),   

=  �((��, �� + ��)| �� ← �� − 1) +   �((��, �� + ��)| �� ← �� − 1), 
                                                                                      �� > 0, �� > 0,                                                          (2�) 
 
�(�1, �1+ �2)=1  ���( �� = 0, ��  ≥ 0)   ��  ( �� = 0, ��  ≥ 0).                                                       (2�)        

  
Note that equations (2a) & (3a) exhibit symmetric behavior towards the two dimensions set by �� ��� ��. 
This symmetric behavior can be easily maintained when these two dimensions are replaced by � dimensions 
( � > 2)   in the study of multinomial coefficients. Note that the notation (�1, �1+ �2) | �� ← �� − 1 ��� � =
1, 2 means that we substitute  �� − 1 for �� in (�1, �1+ �2). 
 
The probability of obtaining k successes in n trials is the probability mass function (pmf) of the binomial 
distribution [23,24], and is given by  
 

�(�, �, �) = �(�, �) �� (1 − �)��� ,      0 ≤ � ≤ �,                                                                                 (4) 
 
while the corresponding Cumulative Distribution Function (CDF), and Complementary Cumulative 
Distribution Function  (CCDF) are given by 
 

� (�, �, �) = ∑   � (�.�, �).                                                                                                                    (5)���
���     

          
�(�, �, �) =  ∑   � (�.�, �).                                                                                                                    (6)�

���     
             
The aforementioned � (�, �, �) ��� �(�, �, �) represent, respectively, the unreliability and reliability of a 
(two-valued) k-out-of-n: G system, which is a coherent system that is said to be “good” if and only if at 
least � out of its � components are “good”  [1,6,10]. 
 
Let us now generalize our notion of a Bernoulli trial by relaxing the condition that the probabilities 
� ��� � of trial success and failure be constant (equivalently, assuming that component reliabilities are not 
necessarily equal). This generalization does not affect �(�, �) , but leads us to replace �(�, �, �)  by 
�(�, �, �), where � =  [�� ��  �� … ��] T. Likewise, we replace � (�, �, �) and �(�, �, �) by � (�, �, �) and 
�(�, �, �). Note that equations (5) and (6) continue to hold with � replaced by �, i.e., 
 

 � (�, �, �) = ∑   � (�.�, �),                                                                                                                 (5�)���
���  

 

�(�, �, �) = �   � (�.�, �).                                                                                                                    (6�)

�

���

  

 

The probability  �(�, �, �) satisfies the recursive relation [1-3, 6, 10, 13] 
 

�(�, �, �) = �� ∗ �(�, � − 1, �/��)  +  �� ∗ �(� − 1, � − 1, �/��)  , 
0 ≤ � ≤ �,    {�, �} ≠ {0,0},                                                                                                                           (7) 

 
where �/�� = [ �� ��  �� … ����] T .  Equations (7) are subject to the boundary conditions 
 

�(�, �, �) = 1.0   ��� � = � = 0,                                                                                                     (8) 
 
�(�, �, �) = 0.0  ��� (� = − 1 �� � = � + 1)   ��� (� ≥ 0).                                                        (9)        
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Again, to facilitate extension to the multinomial case, we use the grid (��, ��) instead of the grid (�, �), 
where �� = � ��� �� = � − � , We also rewrite ��  ��  ���  and rewrite ��  ��  ���   where ��� ��� ��� are 
the probabilities of outcome 1 and outcome 2 in the nth trial, respectively. With this change the vectors � 

and �/��  are replaced by two column matrices of the form  
 

� = �
��� ��� ���

��� ��� ���
… … …

��(���) ���

��(���) ���
�

�

,                                                                                                                              (10) 

 

�/��=�
��� ��� ���

��� ��� ���
… … …

��(���)

��(���)
�

�

.                                                                                                                                   (10 a) 

 
Equations (7) – (9) are now rewritten as  
 

�(��, �� + ��, �) = ��� ∗ �(��, �� + �� − 1, �/��)  +  ��� ∗ �(�� − 1, �� + �� − 1, �/��) 

=  ��� ∗ � ((��, �� + ��, �/��))| �� ← �� − 1)  +  

 ��� ∗ � �(��, �� + ��, �/��))�| �� ← �� − 1),                                                                              (7a) 
 
�(��, �� + ��, �) = 1.0         ��� �� = �� = 0,                                                                               (8a) 
 
�(��, �� + ��, �) = 0.0      ���  (�� = − 1, �� ≥ 1) �� (  �� ≥ 1, �� = − 1).                                (9a) 

  
Again, equations (7a)–(9a) exhibit symmetric behaviour towards the two dimensions of �� ��� �� , and can 
keep such a behavior when a vectorial � of � dimensions (� > 2)  is involved.  
 
Fig. 2 is a Signal Flow Graph (SFG) representing the computation of the binomial probability   �(�, �, �). 
This graph appeared earlier in a  (�, �)  grid in [1-3,6,10,13,16] and in a (��, ��) grid in [19]. The SFG in 
Fig. 2 has a striking similarity to the one in Fig. 1. Both SFGs are acyclic (have no loops), and hence are 
analyzed through path enumeration and multiplication of transmittances along paths. For both graphs, the 
Mason gain formula [6,10,35-38] can be easily applied with all deltas set to 1. 
 
The SFG in Fig. 1 has constant transmittances of value 1 each, while the one in Fig. 2 has variable 
transmittances representing outcome probabilities in a certain trial. Both graphs have an infinite number of 
source nodes along the two Cartesian axes, which serve as a boundary for the region in which the pertinent 
recursion is valid. However, Fig. 2 has only a single real source of value 1.0 (highlighted in black). It has a 
doubly infinite number of fictitious sources (each of value 0.0 coloured in white). These sources can be 
omitted, but they are retained herein to maintain the symmetry of the recursion and to appropriately depict 
the limit for its region of validity.  
 
In passing, we note that the binomial recursion introduced in this section is just one kind of binomial 
recursion, which might be conveniently called Pascal’s recursion, This recursion has the distinct advantages 
of being extendible to the multinomial case and of its use of addition solely (rather than multiplication and 
division). Other types of binomial recursion (that possess certain merits of their own) also exist [20, 59, 60], 
but will not be pursued further herein.   
 

3 Multinomial Coefficients and Multinomial Probabilities  
 
Let us generalize the original Bernoulli trials of Section 2 in another direction by allowing the number of 
outcomes in a single trial to be  r > 2. We use the vector 
 

 � =  [�� ��  … �� ]T , 
 
to denote the numbers of occurrences of the various r outcomes in � independent trials, i.e., ��  is the number 
of times outcome i (1 ≤ �  ≤ r) occurs, so that  
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��  ≥ 0  ,      1 ≤  �  ≤  r,                                                                                                                           (11a) 
 

�      �� = �.                                                                                                                                               (11�)

�

���

 

 

The multinomial coefficient M(k, n, r) is the number of ways in which outcome   �   (1 ≤  � ≤ r ) occurs �� 
times in n independent trials. It is given in terms of the factorial of n divided by the product of factorials of 
the ��’s, namely [21,22]  
 

M(�, n, r) = �!/( ��! ��! ...  ��!) = ( �� +  �� + ⋯ + ��)! / (�1! �2! … �r!).                              (12)   
 

Note that since B(k, n) = M(�, n, 2) , equation (12) reduces to (1a) when   � = 2.  
 

Let us further assume that the probability of occurrence of outcome � throughout the n independent trials is a 
constant pi such that  

 

��   ≥   0, 1 ≤  � ≤ r,                                                                                                                      (13a) 
 

�      �� = 1.0.                                                                                                                                              (13�)

�

���

 

 
The multinomial probability (the probability that occurrences of the r outcomes in n independent trials 
follow the vector �) is denoted by �(�, �, �, �) and given by  

 

 �(�, �, �, �) = �(�, �, �)   ∏   ��
���

��� ,                                                                                         (14) 
 

We now further combine the two generalizations by allowing r > 2 outcomes and allowing variable 
probabilities for various outcomes in different trials. Let  ��� be the probability of occurrence of outcome  � 

in trial j, so that  
 

��� ≥ 0 , 1 ≤  � ≤ r , 1 ≤  � ≤ n,                                                                                                 (15a) 

 

�      ��� = 1.0  , 1 ≤  � ≤ n.                                                                                                             (15�)

�

���

 

 

This change does not affect �(�, �, �), but it affects �(�, �, �, �) since � is no longer a column vector of 
length r, but is instead a matrix of r rows and n columns. Equation (14) is no longer valid, and is to be 
replaced by a recursive relation to be presented in Section 5. 

 

4 Recurrence for Multinomial Coefficients 
 
To obtain a recurrence for the multinomial coefficients, we note that the r events  
 

Vi = {outcome � occurs in the nth trial},  1 ≤  � ≤ r 
 

are mutually exclusive and exhaustive. Hence, we can write (when �� >  0   ���  1 ≤  � ≤ r ) 

 
M(�, n, r) =   ∑      ( M(�, n, r)| Vi ) =      ∑ �(�|��

�
��� ← �� − 1, � − 1, �),                               (16)�

���  
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Note that the r-dimensional vector  
 

k=[�� �� … .����   ��    ���� … .��]T
  .                                                                                                                                                (17)   

 

is replaced in the right-hand side RHS of (16) by another vector of the same size given by 
 

(�|�� ← �� − 1) = [�� �� … .����   (�� − 1)    ���� … .��]T
.                                                         (18) 

 
The above recurrence occurs subject to the following boundary conditions, which are valid for n > 0  
 

�(�, �, �) = 1  when   � = 1,                                                                                                        (19a) 
 
�(�, �, �) =  �(�/��, � , � − 1)  when �� = 0,  1 ≤  � ≤ r.                                                        (19b) 

 
The condition in (19a) occurs when one particular �� = � so that all other ��′�  are 0’s. The condition (19b) 
means that if the number of occurrences of a particular outcome becomes zero, this outcome is expelled 
from the set of possible outcomes, so that their number reduces from � to (� − 1) and the r-dimensional 
vector of occurrences k in (17) is replaced by the (� − 1)-dimensional vector  
 

k/��=[�� �� … .����  ���� … .��]T
.                                                                                                                                                        (20) 

 

The recurrence in (16) and its boundary condition in (19) reduce for � = 2 to the recurrence in (2a) and its 
boundary conditions in (2b). Fig. 3 generalizes Fig. 1 for the trinomial case (� = 3), and displays a SFG 
representing (16) and (19), in which the evaluation of M([1 1 1]T, 3, 3) is obtained recursively as the sum of 
three equal entities, namely  
 

M([1 1 1]T, 3, 3) = M([0 1 1]T, 2, 3) + M([1 0 1]T, 2, 3) + M([1 1 0]T, 2, 3).                                  (21) 
 
The first of the coefficients in the RHS of (21) is given as  
 

M([0 1 1]T, 2, 3) = M([1 1]T, 2, 2) = M([0 1]T, 1, 2) + M([1 0]T, 1, 2).                                           (22) 
 
Now, the two coefficients in the right-hand side RHS of (22) are given by  
 

M([0 1]T, 1, 2) = M([1 0]T, 1, 2) = M([1]T, 1, 1) = 1.                                                                      (23) 
 
The above results mean that  
 

  M([0 1 1]T, 2, 3) = 1+1= 2.                                                                                                              (24) 
 

M([0 1 1]T, 2, 3) = M([1 0 1]T, 2, 3) =M([1 1 0]T, 2, 3) = 2.                                                           (25) 
 
M([1 1 1]T, 3, 3) =2 + 2 + 2=6.                                                                                                        (26)  

 
Each of the values in (23)-(26) can be checked via the basic definition (12). 
 

5 Recurrence for Multinomial Probabilities  
 
The recursive relation for multinomial probability can be obtained via a straightforward extension of (7) or 
(7a)  (for ��   ≥   0, and � ≠ �) 
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�(�, �, �) =  �    �  ��� ∗  �( �|�� ← �� − 1, � − 1, �/�� )�.                                                          (27)   

�

���

 

 
The above recurrence is subject to the following boundary conditions: 
 

�(�, �, �) = 1.0   ���  � = �  ( � = 0 �� � =  ∅ = �ℎ� ����� ������),                                       (28) 
 
�(�, �, �) = 0.0  �ℎ�� ��� ����������  �� =  − 1,    �  ≥ 0.                                                        (29) 

 
Fig. 4 is a Signal Flow Graph (SFG) representing the computation of the trinomial probability �(�, �, �), 
where � is a 3-by-n matrix, whose columns (probabilities of outcomes in various trials) are distinct. Again, 
this SFG is acyclic (loopless). It has a striking similarity to the Pascal Pyramid in Fig. 3, and it is a 3-
dimensional extension of Fig. 2. The SFG in Fig. 4 has a single real source of value 1.0 (highlighted as 
black) while the SFG in Fig.3 has a triply-infinite similar black nodes of value 1.0 each. In Fig. 4, a doubly-
infinite number of fictitious zero nodes are assumed to exist at each of the three planes �� = − 1, �� =
− 1 and �� = − 1, However, these zero nodes are conveniently omitted in Fig. 4. 
 

p1

q1 q2

p2 p3

q3

p4

q4

p5

q5

p2

q1 q2 q3

p3

q4

p4

q5

p5

q6
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p7p5

q6

p4

q5q2 q3
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q4
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q8

p8
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p6

q7
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p7

q8
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k1=4

k1=5

k1 = - 1

 
 

Fig. 2. Two-dimensional signal flow graph for the Probability Mass Function (PMF) of the binomial 
distribution 
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1 1

1

1

1

1

 
 

Fig. 3. Multi-dimensional signal flow graph for computing the trinomial coefficients. This is Pascal 
pyramid comprising Pascal triangles in various planes 

 

p 1
2

p 1
2

p 1
2

p 1
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p 1
1

 
 

Fig. 4. Multi-dimensional signal flow graph for the probability mass function of the multinomial 
distribution up to two generalized Bernoulli trials. A doubly-infinite number of fictitious zero nodes 

exist at each of the planes �� = − �, �� = − � and �� = − � but are not shown 
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6 Iteration versus Recursion 
 
Direct use of recursion constitutes a “lazy” way (from programming point of view) to compute any of the 
four quantities discussed herein. A recursive program might be written as follows (based on the assumption 
that applying the recurrence at a point in its region of validity does not continue indefinitely, but ultimately 
comes to an end at the boundary in a finite number of steps) 
 

If (Conditions of the boundary are satisfied) 
Then  Use Boundary conditions 
Else Utilize validity of recursion by implementing it and reducing the problem to two sub-problems 
for which the boundary is to be reached in fewer steps than those needed for the parent problem;  

 
For example, the multinomial coefficient might be computed via the Matlab code 
  

function S = multm(K) 
    S = 0; 
    sort(K); 
    K(K==0) = []; 
    n = sum(K); 
    r = length(K);     
    if r > 1         
        for i=1:r 
            X = K(i)-1; 
            Y = K; 
            Y(i) = X; 
            Y(Y==0) = []; 
            S = S+multm(Y); 
        end 
    else 
        S = 1; 
    end 
end 
 
 
k = input('Enter the elements of k: '); 
tic 
R = multm(k); 
toc 
disp('The multinomial is') 
disp(R) 

 
Despite the elegant simplicity of the code above, it is a seriously inefficient algorithm for large values of n. 
This brings us to the heart of the problem of recursion versus iteration [1-3,5-7,10,20,23,24,61-72]. Fig. 5 
pinpoints the main problem with recursion, with its unwarranted aggravation of both temporal and spatial 
complexities. In fact, use of recursion amounts to a need for constructing a recursion stack that needs a lot of 
time and memory as it continues to grow till each time the boundary is hit (at the leaves of the recursion tree 
[6]), upon which the stack growth is temporarily reversed, so that ultimately the stack diminishes with the 
required answer obtained. Fig. 5 demonstrates the recursion stack needed for the computation of M([1 3 2]T, 
6, 3) with arrows denoting its growth and diminishing directions. 
 
The Signal Flow Graphs represented herein are truly insightful for recursion elimination or removal [6,10, 
73-80], i.e., for replacing a recursive algorithm by a non-recursive or iterative one. Non-recursive algorithms 
already exist for the binomial coefficients [6,20] and for the binomial probability [1-3,6,10,23,24]. In these 
iterative algorithms, one can minimize computer storage by using a strategy of the row, column, or diagonal 
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sweep in which the contents of a predecessor entity (row or column or diagonal) are safely overwritten by 
those of a corresponding successor entity [1,6,10]. One can also avoid or significantly reduce the danger of 
overflow encountered when computing binomial coefficients via factorials [24]. 
 

M ([1 3 2]T,6,3) = M([0 3 2]T,5,3) + M([1 2 2]T,5,3) + M([1 3 1]T,5,3)  =10 + 30 + 20=60 

M([0 3 2]T,5,3) = M([3 2]T,5,2) =10 

M([1 2 2]T,5,3) = M([0 2 2]T,4,3) + M([1 1 2]T,4,3) + M([1 2 1]T,4,3)  =6+ 12 +12=30 

M([0 2 2]T,4,3) =M([2 2], T 4,2) = M([1 2] T,3,2) +  M([2 1] T,3,2)  =3 + 3 =6 

M([2 2] T,4,2) = M([1 2] T,3,2) + M([2 1], T3,2)  =3 + 3 =6 

M([1 2] T,3,2)  =3 

M([2 1] T,3,2) = M([1 1] T,2,2) +  M([2 0] T,2,2)  =2+ 1 =3 

M([1 1] T,2,2) = M([0 1] T,1,2) + M([1 0] T,1,2)  =1 +1 =2 

M([0 1] T,1,2) = M([1] T,1,1)  =1 

M([1 0] T,1,2) = M([1] T,1,1)  =1 

M([0 1 2]T,3,3) =  M([1 0 2]T,3,3) =3 

M([1 1 1]T,3,3) = M([0 1 1]T,2,3) + M([1 0 1]T,2,3) + M([1 1 0]T,2,3) =2+2+2=6 

M([1 1 2]T,4,3) = M([0 1 2]T,3,3) + M([1 0 2]T,3,3) + M([1 1 1]T,3,3)  =3 +3+6=12 

M([1 3 1]T,5,3) = M([0 3 1]T,4,3) + M([1 2 1]T,4,3) + M([1 3 0]T,4,3)  =4 +12+4=20 

 
Fig. 5. Recursion Stack used in the computation of the multinomial coefficient M([1 3 2]T, 6, 3). The 

downward arrow shows the direction of the initial growth of the stack, while the upward arrow 
indicates its subsequent decrease in size till ultimately it vanishes 

 
In passing, we note that while the non-recursive algorithm for the binomial coefficient seems to have been 
known for millennia (definitely, for several centuries before Pascal), the analogous non-recursive algorithm 
for the (generalized) binomial probability seems to have appeared only recently. This latter algorithm is 
called the BH1 algorithm [1,6,10], and is deduced via generating functions by Barlow and Heidtmann [81]. 
It was later re-obtained via recursion removal by Rushdi [1,6,10] through an insightful development, in 
which SFGs played a pivotal role. The BH1 algorithm combined simplicity and efficiency (it has quadratic 
temporal complexity, and was believed for a while to be optimal). Later, Belfore [82] presented a more 
elaborate algorithm, which is currently believed to be the optimal non-recursive algorithm for the 
(generalized) binomial probability. 
 

7 Conclusions 
 
This paper offers a tutorial exposition of four recursively-defined combinatorial functions, viz., the binomial 
and multinomial coefficients and probabilities. Each of these functions is characterized by a certain 
recurrence over a specific region of validity together with given boundary conditions. These boundary 
conditions are along straight lines in a two-dimensional space for the binomial functions. Analogously, the 
boundary conditions extend along hyper-planes in the n-dimensional space for the multinomial functions. 
The region of validity is infinite as it extends without bounds when n tends to infinity. Otherwise, this region 
is bounded by the hyper-planes at which the boundary conditions hold. 
 
A notable contribution of the paper is the visualization of the aforementioned recurrences and boundary 
conditions via acyclic Signal Flow Graphs (SFGs) in the two-dimensional or n-dimensional space. Each of 
the four functions is amenable to evaluation via recursive algorithms, which are elegant (albeit temporally 
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and spatially inefficient). The SFG interpretation proved really handy for the construction of efficient 
iterative solution for the two binomial functions. Similar efficient iterative algorithms for computing the two 
multinomial functions are warranted and will be possibly constructed with the aid of the pertinent SFGs.  
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