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Abstract

We present evidence that it is unlikely that the streaming instability (SI) can form planetesimals from millimeter
grains inside axisymmetric pressure bumps. We conducted the largest simulation of the SI so far (7 million CPU
hours), consisting of a large slice of the disk with millimeter grains, a solar-like dust-to-gas ratio (Z= 0.01), and
the largest pressure bump that does not cause gravitational instability (GI) in the particle layer. We used a high
resolution of 1000/H to resolve as many SI unstable modes as possible. The simulation produced a long-lived
particle overdensity far exceeding the SI criteria (i.e., a critical solid abundance to headwind parameter ratio Z/Π)
where strong clumping would occur if these conditions were present over an extended region of the disk; yet we
observed none. The likely reason is that the time it takes particles to cross the high-Z/Π region (tcross) is shorter
than the growth timescale of the SI (tgrow). We propose an added criterion for planetesimal formation by the SI—
that tcross> tgrow. We show that any bump larger than the one in this run would form planetesimals by the GI
instead of the SI. Our results significantly restrict the pathways to planet formation: either protoplanetary disks
regularly form grains larger than 1 mm, or planetesimals do not form by the SI in axisymmetric pressure bumps.
Since bumps large enough to induce the GI are likely Rossby-wave unstable, we propose that millimeter grains
may only form planetesimals in vortices.

Unified Astronomy Thesaurus concepts: Planet formation (1241); Planetesimals (1259)

1. Introduction

Ever since its first iconic images of the circumstellar dust
rings around HL Tau (ALMA Partnership et al. 2015), the
Atacama Large Millimeter/submillimeter Array (ALMA) has
revolutionized our understanding of planet formation. Before
ALMA there had been plenty of speculation that gas pressure
bumps might play a role in planet formation by concentrating
dust grains (e.g., Johansen et al. 2009; Sándor et al. 2011;
Pinilla et al. 2012; Bai & Stone 2014; Simon & Armitage 2014).
However, ALMA has shown that axisymmetric dust rings, and
the pressure bumps that likely form them, not only exist, but
are ubiquitous in young protoplanetary disks (Huang et al.
2018).

These dust rings are a natural site for planetesimal formation.
In Carrera et al. (2021, 2022) we used 3D simulations (particles
+ gas) to show that even a fairly small pressure bump can
accumulate centimeter-size dust grains sufficiently to trigger
planetesimal formation. However, it is notable that the particle
sizes observed by ALMA are closer to the millimeter-size
range (Huang et al. 2018). This observation might merely
indicate that larger grains have been effectively converted into
planetesimals, and there is indeed some tentative evidence that
that might be the case, since planetesimal formation seems to
explain the relatively uniform optical depths in dust rings
(Stammler et al. 2019). Or the maximum grain size may truly
be <millimeter—observations of polarized and continuum
dust emission from Ophiuchus IRS 48 are consistent with either
an optically thin disk with both submillimeter and 5 cm grains,
or an optically thick disk with submillimeter grains only

(Ohashi et al. 2020). Thus, it is critically important that we
understand whether or how planetesimal formation can occur
from dust grains no larger than ∼1 mm. This Letter serves
that need.

1.1. Barriers to Planet Formation

Planet formation occurs in the circumstellar disks that
surround young stars. It begins with the coagulation of
micrometer-size dust particles into larger grains. However, this
growth is quickly impeded by numerous growth barriers. As
particles grow larger, their collision speeds increase
(Weidenschilling 1984; Ormel & Cuzzi 2007). At some point,
at around ∼millimeter–centimeter size, collisions between
particles are more likely to lead to bouncing or fragmentation
rather than growth (Blum & Wurm 2008; Güttler et al. 2010;
Zsom et al. 2010). In addition, particles also experience a
headwind because the gas component of the disk orbits at a
slightly sub-Keplerian speed thanks to its radial pressure
support. The difference Δv between the Keplerian speed vk of
the particles and the azimuthal gas velocity uf is
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where cs is the sound speed and P is the gas pressure
(Nakagawa et al. 1986). This headwind induces radial drift on
the particles due to aerodynamic drag. The rate of radial drift is
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(Weidenschilling 1977), where the τ is the Stokes number,
or the particle stopping time in units of the Keplerian
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where a is the particle size, ρ is the gas density, and ρs is the
density of the solid material (e.g., ρs= 1g cm−3 for ice). For τ∼ 1,
radial drift itself limits the particle size (Weidenschilling 1977).
This radial drift barrier is generally dominant in the outer disk
(Birnstiel et al. 2012).

1.2. Overcoming Barriers: Streaming Instability

Perhaps the biggest open question in planet formation is how
dust particles overcome the fragmentation, bouncing, and radial
drift barriers to form planetesimals. Planetesimals are the 1–100
km bodies that are thought to be the building blocks of planets.
The most promising formation scenario is that planetesimals
form through some form of gravitational instability (GI) of
small millimeter–centimeter grains. For example, Goldreich &
Ward (1973) suggested that solids might sediment into a very
thin dust layer at the midplane that would then become
gravitationally unstable. However, it was soon realized that the
dust layer would be Kelvin–Helmholtz unstable and the
turbulence induced by the Kelvin–Helmholtz instability would
impede further sedimentation (Weidenschilling 1980).

Today, most models of planetesimal formation rely on some
aerodynamic process to concentrate particles in a small region
until the local particle density ρp exceeds the Roche density
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so that the dust becomes gravitationally unstable. Some
prominent examples include the accumulation of dust in
axisymmetric pressure bumps in the disk (e.g., Taki et al.
2016; Dullemond et al. 2018; Stammler et al. 2019; Carrera
et al. 2021), MHD zonal flows (e.g., Dittrich et al. 2013; Xu &
Bai 2022), disk photoevaporation (e.g., Throop & Bally 2005;
Carrera et al. 2017), and trapping dust inside vortices (e.g.,
Tanga et al. 1996; Cuzzi et al. 2001; Heng & Kenyon 2010;
Raettig et al. 2021). However, the most promising mechanism
seems to be the runaway convergence of radial drift known as
the streaming instability (SI; Youdin & Goodman 2005;
Johansen & Youdin 2007). One important piece of evidence in
favor of the SI is that the SI seems to reproduce the inclination
distribution of binaries in the Kuiper Belt remarkably well
(Nesvorný et al. 2019).

One of the most important things to know about the SI is that
it only seems to be an efficient process when the dust-to-gas
ratio Z=Σp/Σg has already reached some minimum threshold.
The SI is most efficient for τ≈ 0.1− 0.5. For smaller τ, the
critical Z needed to produce particle densities in excess of
ρRoche rapidly increases to Z? 0.01 (Carrera et al. 2015; Yang
et al. 2017; Li & Youdin 2021). The next thing to know about
the SI is that it is more efficient when the headwind Π=Δv/cs
induced by the pressure gradient is lower (Bai & Stone 2010;
Carrera et al. 2015). In fact, Sekiya & Onishi (2018) showed
that the overall structure of the particle filaments produced by
the SI seems to scale with Z/Π. This result allows us to rescale
the strong clumping criteria of Carrera et al. (2015), Yang et al.
(2017), and Li & Youdin (2021) for any pressure profile
(see Section 3). Finally, there are theoretical predictions

(Chen & Lin 2020; Umurhan et al. 2020) and numerical
models (Gole et al. 2020) that indicate that the SI may have
trouble forming planetesimals in turbulent disks, though that
seems to depend on the type of turbulence (Yang et al. 2018).
A proper study of turbulence is beyond the scope of this work;
our runs only have a small amount of turbulence generated by
particle streaming at the midplane.
It is quite possible that two or more mechanisms (the SI,

pressure bumps, zonal flows, etc.) work together in tandem.
After Carrera et al. (2015) identified the Z− τ dependence of
the SI, several authors have sought to combine the SI with
some other process that also concentrates particles, such as
pressure bumps (Auffinger & Laibe 2018; Stammler et al.
2019; Carrera et al. 2021, 2022), snow lines (Drążkowska &
Alibert 2017), disk photoevaporation (Carrera et al. 2017),
vortices (Regály et al. 2021), and MHD zonal flows (Xu &
Bai 2022).
In this work we follow up on the results of Carrera et al.

(2021, 2022), who found that, for centimeter-size particles,
pressure bumps reliably create the conditions necessary to
trigger planetesimal formation by the SI. Importantly, the
pressure bump does not need to be very large, and a particle
trap (meaning that particle drift is halted) is not needed to form
planetesimals. However, the results for smaller millimeter-size
particles were inconclusive. This is an important limitation
because the maximum particle sizes that we observe in ALMA
rings may be ∼millimeter (see the discussion above). Thus, it is
important to ascertain whether or not planetesimals can form
with millimeter grains only. In this Letter we extend the work
of Carrera et al. (2021, 2022) with a new high-resolution
simulation with millimeter-size grains and a large pressure
bump. Our single objective is to determine whether the SI can
form planetesimals in a pressure bump out of millimeter-size
grains.
This Letter is organized as follows. In Section 2 we describe

our numerical methods, including our disk model (Section 2.3),
pressure bump model (Section 2.4), and our simulation setup
(Section 2.5). Our results are presented in Section 3. In
Section 4 we propose a way to interpret our results and suggest
a new planetesimal formation criterion. Finally, our summary
and conclusions are found in Section 5.

2. Numerical Methods

We employ identical numerical methods as Carrera et al.
(2021), with different parameters. Readers who are familiar
with our previous works may prefer to read the following short
text, skip the rest of this section, and continue on to
Section 2.5: We conducted local, shearing box simulations
with the ATHENA code that include gas and particles but have
no magnetic fields or externally driven turbulence. The gas is
treated as a compressible, isothermal fluid, and the particles are
Lagrangian superparticles. Particle self-gravity is implemented
using a particle-mesh approach with shear-periodic radial
boundary conditions. In the rest of this section we summarize
our methods. We direct the reader to Carrera et al. (2021) for
additional details.

2.1. Hydrodynamic Solver

We use the ATHENA code (Stone et al. 2008) in pure
hydrodynamic mode with particle feedback and no magnetic
fields and an isothermal equation of state P cs

2r= . We use the
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shearing local shearing box approximation, where a patch of
the disk is treated as a local Cartesian frame (x, y, z), neglecting
disk curvature. The local frame is defined in terms of the disk’s
cylindrical coordinates R z, ,f ¢( ) as

x R R
y R

z z ,

0

0f
= -
=
= ¢
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where R0 is the center of the box. ATHENA includes a
superparticle approach in which each superparticle is a
statistical representation of many smaller particles. All of our
runs have the same number of superparticles as there are grid
cells. Superparticle i is governed by an equation of motion:
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The prime denotes a frame in which the background shear
velocity has been subtracted. The xv2 kh- W ˆ term is responsible
for inward radial drift due to aerodynamic drag. The Fg term
represents particle self-gravity. The size of the time step is set
by the Courant condition, and is typically∼ 3× 10−4Ω−1 for a
1000/H resolution. We use the same methods as Simon et al.
(2016) to solve the Poisson equation—we use a triangular-
shaped cloud (TSC) scheme to map the mass density of
particles to grid cells and use a fast Fourier transform to solve
the Poisson equation,

G4 , 72
pp r F = ( )

F . 8g = -F ( )

We calculate Fg by a central finite difference and then
interpolate to the locations of the particles via TSC. For more
details we refer the reader to Simon et al. (2016).

2.2. Boundary Conditions

The boundary conditions are the same for the gas and
particle components: shearing periodic in the radial dimension
(Hawley et al. 1995), periodic in azimuth, and a modified
outflow boundary in the vertical dimension in which gas
density is extrapolated into the ghost zones using an
exponential function (Simon et al. 2011; Li et al. 2018). The
modified outflow boundary condition will not entirely prevent
gas mass loss along the vertical boundary. To ensure that mass
is globally conserved, we renormalize the gas density in every
cell at every time step to keep the total gas mass constant. As
for the particles, we verify that no particles escape the
simulation box through the vertical boundaries. Li et al.
(2018) tested the effect of different vertical boundary
conditions (vBC), and found that the outflow vBC produced
less stirring of the particle layer for small boxes (Lz= 0.2H),
but for a large box such as ours (Lz= 0.8H) all their choices of
vBC produced essentially the same results.

The gravitational potential has the same boundary conditions
in the radial and azimuthal directions as the gas and particles.
However, the vertical boundary conditions are open with the
potential in the ghost zones calculated via a third-order
extrapolation.

2.3. Disk Structure

The simulation box is centered at r= 50 au for a disk with
surface density Σ and temperature T given by

r
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where Mdisk= 0.09Me and rc= 200 au. The temperature
corresponds to an optically thin disk. The stellar mass is set to
Må= 1Me. The disk is slightly flared, with aspect ratio
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where cs is the isothermal sound speed and vk is the Keplerian
orbital speed. We begin with a vertically stratified Gaussian gas
density profile. The gas density is uniform along (x,y) apart
from small random initial perturbations. The initial concentra-
tion of solids is

Z 0.01, 12p gº S S = ( )

with an initial particle scale height of Hp= 0.025H. We fix the
particle size to a≡ 1 mm and compute the particle Stokes
number τ dynamically (Equation (4)). The background pressure
gradient (i.e., not accounting for the pressure bump) is
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where Δv is the headwind experienced by solid particles. The
strength of self-gravity is set by 4πGρ0≈ 0.2Ω2, which
corresponds to a Toomre (Toomre 1964) Q value of Q≈ 8.

2.4. Pressure Bump

Starting with the background gas profile described in the
previous section, we gradually form a pressure bump with a
Gaussian density profile centered on x= 0 with width
w= 1.14H

x y z Ae e, , 1 . 14x w z H
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Given A, the azimuthal speed that maintains geostrophic
balance is

u x y z
Axc e

w Ae
, ,

2 1
. 15y

x w

x w
s
2 2

2 2

2 2

2 2=
-

W +

-

-
ˆ ( )

[ ]
( )

( )

( )

In all our simulations the bump amplitude starts at zero and
grows gradually. To develop and sustain the pressure bump we
use the Newtonian relaxation scheme of Carrera et al. (2021).
At each time step Δt we adjust ρ and uy by

t

t
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where t 1reinf
1= W- is the reinforcement timescale. The New-

tonian relaxation scheme is maintained for the duration of the
simulation
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2.5. Simulation Setup

Our experiment consists of only three simulations:

1. high-res,A=0.5: Our main experiment is a high-
resolution (1000 zones/H) simulation with millimeter-
size particles and a Gaussian pressure bump with
amplitude A= 0.5. This is just below the amplitude that
would lead to a particle trap (dP/dr= 0).

2. low-res,A=0.5 and low-res,A=0.6: Two much
lower resolution runs (160 zones/H) with a pressure
bump amplitudes of A= 0.5, 0.6. The low resolution is
intended to not resolve the fastest-growing modes of the
SI, and demonstrate that A= 0.6 is just enough to form
planetesimals by GI.

In practice, we conducted several low-res runs with different
pressure bump amplitudes to find the critical value where low-
res started to form planetesimals by the GI. That turned out to
be AGI= 0.6. That became low-res,A = 0.6. We then
conducted a high-res for a pressure bump amplitude just a
step below AGI, and that became high-res,A = 0.5. Note
that a high-res run with A= AGI would almost certainly
show the GI as well because higher resolution allows for higher
particle densities and better resolves the FFT-based gravita-
tional potential.

In all cases, the simulation domain is a shearing box with
dimensions Lx× Ly× Lz= 9H× 0.2H× 0.8H, where H is the
gas scale height. Figure 1 shows the pressure density profile for
our three simulations (two runs with A= 0.5 and one with
A = 0.6), as well as the background pressure profile. For
reference, we also show the profile for the smallest pressure
bump that has a true particle trap. Note also that none of our
three runs have a local pressure maximum, and thus none have
a particle trap. In addition, the point of minimum headwind,
where the SI should be most effective, depends weakly on A
and is offset from the center of the box (at around x=−1.2H).

Finally, the initial particle distribution is horizontally
uniform but normally distributed along the vertical axis, with

a particle scale height of Hp= 0.025H. To seed the SI, the
positions of the particles are given small random perturbations
away from this distribution.

2.6. Resolution and the SI

Our key goal is to determine whether the SI can form
planetesimals for millimeter-size particles. Proving that the SI
is not active is challenging because the fastest-growing modes
of the SI are difficult to resolve. Our high-res run is
intended to do just this to the greatest extent possible. The
resolution needed to resolve the SI is notoriously difficult to
estimate, especially in the nonlinear regime. Our best guide is
the numerical work of Yang et al. (2017), who saw SI filaments
for τ= 0.01 and a resolution of 640/H. Compared to that work,
our runs have higher resolution (1000/H) and larger particles
(τ≈ 0.0123). Yang et al. (2017) found that higher resolution
and larger particle sizes both cause filaments to form earlier.
They also found that the largest voids in streaming turbulence
scale with τ. This suggests that the modes of the nonlinear
regime (and hence, the grid size required) scale with τ,
consistent with the linear regime. For these reasons, we feel
confident that high-res,A=0.50 is sufficiently well
resolved to capture the SI.
We adopt a higher resolution than Yang et al. (2017) in order

to give our high-res run every opportunity to grow the SI as
quickly as possible. Because there is no theoretical estimate of
the fastest-growing wavelength in the nonlinear regime and a
turbulent medium, we are limited to a back-of-the-envelop
estimate based on linear theory in a laminar environment:
within the “resonant-drag instability” regime of the SI, the
fastest-growing modes are those that satisfy the epicyclic
resonant condition (Squire & Hopkins 2020)

k w k , 18s z= W· ˆ ( )

where k= (kx, 0, kz) is the wavenumber, ws is the dust drift
velocity with respect to the gas, and k k kz z=ˆ . Nakagawa
et al. (1986) showed that w xv2s kth» - ˆ. Therefore, the
fastest-growing mode has wavelength

r
k

k
4 . 19x
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For the sake of simplicity let us assume that− kx/kz≈ 1. Given
our typical particle Stokes number of τ= 0.0123 for milli-
meter-size particles and bump amplitude, we compute λ

numerically across the simulation domain.
Figure 2 shows the number of grid cells per λ across the

simulation for our high-res and low-res runs. The figure
shows that our high-res run can resolve the fastest-growing
mode of the SI everywhere with at least four grid cells per λ.
Conversely, the low-res run quite intentionally cannot
resolve the fastest-growing modes of the SI in the planetesimal
formation region. Therefore, if this run forms planetesimals it
would potentially be through a non-SI process (see Section 3).

3. Results

Our key results are quite simple:

1. The high-res,A=0.5 run never forms planetesimals,
or even gets close to the Roche density, despite its high
resolution and long runtime.

Figure 1. Gas pressure profile with and without a pressure bump. Our
simulations have bump amplitudes of A = 0.5 (high-res and low-res,
blue) and A = 0.6 (low-res, orange). For reference, we also show the
pressure profile without a bump (gray) and with the smallest bump with a
particle trap ( dP drmax 0;[ ] green). Because the pressure bump is sitting on
top of a background pressure gradient, the point of minimum headwind is offset
from the center of the simulation box.
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2. The low-res,A=0.6 run forms planetesimals and
low-res,A=0.5 does not. Furthermore, we can show
that the planetesimals in low-res,A=0.6 form
exclusively by the GI.

Figure 3 shows the maximum particle density for all of our
runs as a function of time. For high-res,A=0.5 the density
peaks at t= 180Ω−1 (vertical dotted line) at only 12% of the
Roche density. Figures 4 and 5 show what is happening in the
simulation at around this time. Figure 4 shows the dust-to-gas
ratio Z=Σp/Σg for three snapshots centered around
t= 180Ω−1. Particle feedback forms large-scale particle
filaments across the entire domain, but we note that these are
much wider and less dense structures than the “strong
clumping” associated with the SI (∼0.3H versus∼0.01H; Yang
et al. 2017).

While particle filaments drift across the simulation, Figure 4
also shows a large steady-state particle pileup around the point
with minimum headwind η. There, the dust-to-gas ratio reaches
Z 0.03 at its peak. Sekiya & Onishi (2018) showed that the
clumping structure of the SI scales with Z/Π. In the region
within± 0.1H from the peak in Z has 0.028<Π< 0.030,
which gives a normalized dust-to-gas ratio of Z/Π≈ 1.06. For
comparison, we also show the strong clumping criteria
obtained by Carrera et al. (2015), Yang et al. (2017), and Li
& Youdin (2021) for this particle size. In addition, Figure 6
shows these criteria in terms of Z/Π versus τ. The key
takeaway is that our high-res simulation has a very
prominent peak in Z/Π that is deep inside the region where
the SI would cause strong clumping if the conditions held over
an extended radial region of the disk. Yet, our high-res
simulation shows no sign of strong clumping. Furthermore, the
simulation has a run long enough (t 265max

1= W- ) for filaments
to develop (Figure 2 of Li & Youdin 2021).

The difference in local conditions between our runs and
those of Carrera et al. (2015), Yang et al. (2017), and Li &
Youdin (2021) reflects a limitation of all small-box simulations.
They all effectively assume that the particular value of Z is
maintained over an extended region of the disk, which may not
translate well to pressure bumps where high Z is only attained

in a small region. Only a high-res large-box simulation like
ours can determine whether localized changes to (Z, Π) lead to
planetesimal formation.

Figure 2. Number of grid cells per λ for our two resolutions, where λ is the
wavelength of the fastest-growing mode of the SI (Equation (19)). The high-
resolution run has just enough resolution to resolve the fastest-growing modes
everywhere, despite the small particle size and low η inside the pressure bump.
The low-resolution run does not adequately resolve the SI in the planetesimal
formation region, as the number of cells per λ is < 1.

Figure 3. Maximum particle density, normalized to the initial midplane gas
density, for all runs. Blue: A = 0.5 cannot form planetesimals despite having
enough resolution to resolve the fastest-growing modes of the SI. Green and
orange: A = 0.6 forms planetesimals, even at low resolution, but A = 0.5 does
not. The vertical line marks the time of the snapshot shown in Figure 5.

Figure 4. Top row: gas density profile at the midplane, normalized to the initial
midplane gas pressure, across the simulation domain for high-res, A = 0.5.
Second row: dust-to-gas ratio for three snapshots in the vicinity of t = 180Ω−1.
Wide particle filaments form everywhere, and a steady-state particle pileup
occurs in the region of minimum headwind η. The dust-to-gas ratio peaks at
Z  0.03 with a local headwind of Π ≈ 0.0283. Third row: headwind
parameter Π. Bottom row: normalized dust-to-gas ratio Z/Π, along with the
SI criteria (dotted lines). These criteria are also shown in Figure 6.
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Figure 5 shows the snapshot at t= 180Ω−1 in greater detail.
The density maximum is not inside the particle pileup; instead,
it occurs about∼1.1H downstream, at x≈−2.4H, and it
merely reflects a brief moment when the particles have
sedimented to the midplane but turbulence has not fully

developed. At t= 180Ω−1 one can see features of Kelvin–
Helmholtz turbulence around−2.5H< x<−2.2H. Using the
convention employed by Gole et al. (2020), we calculate that
α= 6× 10−5 in the active region and near the midplane
(|z|< 0.02H), compared to an average of α= 4× 10−6 across

Figure 5. Snapshot of high-res,A=0.5 at t = 180Ω−1, when the maximum particle density is reached (Figure 3). The third row shows the mean particle density;
ρ0 is the initial midplane gas density at x = ±∞ . The bottom rows zoom in farther to two regions that show interesting structure. They show a slice of the simulation
at y = 0. The left region shows features of Kelvin–Helmholtz turbulence. The peak density at the midplane is a temporary aberration; as turbulence develops the
density drops (Figure 7). The right region shows a small density peak, but little structure. The local pressure gradient is Π ≈ 0.028.
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the entire domain. At later times we see similar features but
with a higher particle scale height. After t≈ 200Ω−1 we seem
to reach a steady state with no sign of strong clumping (see
Figure 3).

We estimated the total rate of mass loss through the vertical
outflow boundaries. This simulation loses aroundΔm/m< 10−6

of its total mass per time step. Most of the outflow occurs in
front of the particle filaments. For example, for the snapshot
shown in Figure 5, the rate of outflow (Δm/m= 4× 10−6)
occurs at x= 1.04H. The active region (−2.5H< x<−2.2H)
actually has one of the lowest rates of outflow (Δm/m=
3× 10−10), as the turbulence is heavily concentrated at the
midplane.

Figure 7 shows our final snapshot, at t= 264.7Ω−1. This is
later than the time when Li & Youdin (2021) saw clear
evidence of filament formation for Z= 0.02, Π= 0.05,
τ= 0.01. At this point the simulation has had time to develop
turbulence and seems to have reached something close to a
steady state. The value of Z/Π has decreased slightly to ≈0.88
relative to the snapshots in Figure 4, but that value is still ≈2.7
times larger than the value where Li & Youdin (2021) found
strong clumping under the assumption that these conditions
were held over an extended radial region of the disk. In other
words, if those results were a predictor of the behavior of the SI
in pressure bumps, the SI should be easily visible, yet there is
none. This shows that it is difficult to trigger the SI for small
particles when high Z/Π is only attained in a small region. In
Section 4.1 we discuss the most likely reason why strong
clumping failed.

For the sake of completeness, Figure 7 also shows the
structure in the densest particle filament (at x≈ 1.7H), though
in that case we do not expect strong clumping because the Z/Π
ratio is quite low.

Before conducting the high-res run, we conducted
several low-res runs at various amplitudes. We found that
low-res,A = 0.5 did not form any structures but low-
res,A = 0.6 did. The purpose of this experiment is to show
that any pressure bump much larger than A= 0.5 can form

GI-unstable particle pileups without the need for the SI.
Figure 8 shows four snapshots of low-res,A = 0.6. The
snapshots start at t= 205Ω−1, which is an instant before the
maximum particle density p,maxr reaches the Roche density
(ρR/ρ0= 45). The other snapshots are spaced in even intervals
of 10Ω−1. The snapshots show the azimuthally and vertically
averaged particle density in the region−2H< x<−0.5H. The
top-left panel shows the gas density profile with dashed lines at
x ä {−2H, −0.5H} for reference. The top-right panel shows
the maximum particle density versus time, with black circles
marking the times when the snapshots are taken.
The snapshots in Figure 8 show that the formation of

nonaxisymmetric structure exactly coincides with crossing the
Roche density. This is a telltale sign of gravitational instability.
This run reaches ρp/ρg= 3 at t= 128.5Ω−1 (blue dashed line of
the top-right panel). This is a useful reference point. Yang et al.
(2017) conducted a simulation with the same particle size and
resolution as low-res with ρp/ρg 3 that did not show any
clumping after 1000 orbits. In contrast, low-res,A = 0.6
reaches the Roche density after 12 more orbits (t= 206Ω−1). All
this is to show that the planetesimal formation in Figure 8 occurs
purely through the GI: a particle trap concentrates solids until the
particle density crosses the Roche density.
Is it possible that a higher-resolution run with A= 0.6 might

have shown signs of the SI? Yes, of course. But our primary
point is that the SI is not needed. Taken together, these runs
prove one thing: for millimeter-size particles, any pressure
bump large enough to form planetesimals by the SI is also
large enough to form planetesimals without it.

4. Discussion

4.1. New SI Criterion: Residence Time

Considering that the high-res simulation reached high Z/
Π values, why did it fail to form planetesimals? The most
plausible explanation is that each particle’s residence time
inside the high Z/Π region is shorter than the SI growth
timescale. Once particles finish crossing the density peak, any
progress toward SI filaments is essentially forgotten.
This suggests a new criterion for the SI: tcross> tgrow. Let ℓ

be the width of a region in a protoplanetary disk with Z/Π
suitable for planetesimal formation. The particle crossing time
is tcross= ℓ/|vr|, where vr,

v
c2

1
, 20r

s

t t
=

- P
+

( )

is the particle drift rate (Weidenschilling 1977). In the case of
our high-res simulation we have τ= 0.0123, and the
density peak is roughlyΔx≈ 0.1H wide with Π≈ 0.0283. That
works out to a nominal crossing time of tcross≈ 144Ω−1. This
value is comparable to the time needed for SI filaments to
become visible for this particle size (Yang et al. 2017; Li &
Youdin 2021). One additional complication is that in our
simulations, and in any scenario where an external force
applies a torque on the gas, the particle drift rate may be
affected by that torque as well (Carrera et al. 2022). In our
high-res run the particle drift rate across the Z/Π region is
≈12 times higher than in the above estimate. Therefore, the
particle residency time in the high Z/Π region in high-res is
significantly smaller than the growth time of the SI for this
particle size.

Figure 6. Solid abundance criterion for strong clumping in terms of Z/Π vs. τ
as reported in Carrera et al. (2015, blue), Yang et al. (2017, red), and Li &
Youdin (2021, green), but for the case without a pressure bump. The orange
star marks the (τ, Z/Π) for the high-res,A=0.5 snapshots in Figure 4
(τ ≈ 0.0123, Z/Π ≈ 1.06). If the conditions in the density peak in our high-
res run were applied over an extended radial region of the disk, previous
works show that the SI would produce strong clumping.
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Figure 7. Snapshot of high-res,A=0.5 at t = 264.7Ω−1, which is our final snapshot and it is later than the time when Run Z2T1 of Li & Youdin (2021) formed
filaments. The third row shows the mean particle density; ρ0 is the initial midplane gas density. The bottom row zooms in farther to the regions with the highest Z.
They show a slice of the simulation at y = 0. Neither region shows strong clumping. For the region on the right, Z ≈ 0.027 and Π ≈ 0.226, so the lack of strong
clumping is expected. But on the left, Z ≈ 0.025 and Π ≈ 0.029 is well inside the region where strong clumping would occur if the conditions present in the pressure
bump were met over a wider radial region of the disk.
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4.2. Can the SI Win against GI for A= 0.6?

In other words, if low-res,A = 0.6 had instead had a
much higher resolution, would we have seen the SI form dense
particle filaments before the GI took over? We can use our

residence time criterion to make an educated guess. At its
minimum, Π= 0.0143, and within± 0.1H we have a mean
value of Π≈ 0.0145. That works out to about half of the drift
rate as for A= 0.5 and a crossing time of tcross≈ 280Ω−1,

Figure 8. Four snapshots of the low-res,A = 0.6 simulation starting at the time when the particle density is about to reach the Roche density. The top-left panel
shows the gas density profile, and vertical dashed lines that mark the −2 � x/H � −0.5 zoom-in region of the snapshots; ρ0 is the initial midplane gas density. The
top-right panel shows the maximum particle density over time, with the times of the snapshots marked. The simulation only begins to develop nonaxisymmetric
structure after it crosses the Roche density—a telltale sign of gravitational instability.
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before taking into account any acceleration due to the external
torque on the bump. If we assume that the crossing time is not
much shorter than tcross= 280Ω−1, then our proposed SI
criterion would be met—according to Li & Youdin (2021) the
timescale of filaments is around∼ 200Ω−1. However, the SI
might not outpace the GI. In low-res,A = 0.6, the Roche
density is reached at around the t= 200Ω−1 anyway.
Considering that there is some delay between the beginning
of the simulation and reaching the Z/Π needed for the SI, there
does not seem to be enough time for the SI to act before the GI
forms planetesimals.

4.3. Are These Pressure Bumps Rossby-wave Unstable?

Indeed, they very well might be. In Carrera et al. (2021) we
calculated that the largest Rossby-wave stable pressure bump is
probably not much larger than A≈ 0.20. The ones in this Letter
are significantly larger than that. But this only serves to make
the situation more precarious for the SI and millimeter-size
grains. We pushed the bump past the Rossby wave instability
limit, right to the edge of the GI, and still the SI could not
produce strong clumping for millimeter grains. A more realistic
(i.e., smaller) pressure bump would have concentrated particles
less and would have retained stronger headwind Π.

4.4. Should We Run high-res,A = 0.5 Longer?

It is possible that if we were to prolong high-res, strong
clumping might appear later. Indeed, Yang et al. (2017)
showed that increasing resolution and increasing the runtime
led to strong clumping for lower Z/Π than was seen in Carrera
et al. (2015). Comparing our total runtime of t= 265Ω−1 to
past works we find that at that point filaments were clearly
visible in Li & Youdin (2021) but barely visible for Yang et al.
(2017). Considering that our particle size is slightly larger, our
resolution is higher, our Z is much larger, and our Π is much
smaller, we feel that evidence for strong clumping should have
appeared by now.

Importantly, there is a strong argument against prolonging
the simulation: it might create artifacts. More specifically, this
simulation has already run long enough to allow particles to
cross the entire box. Running a simulation for much longer
than the box crossing time would allow particles to wrap
around the simulation box multiple times. This might lead to
artifacts and unphysical results. For example, allowing particles
to wrap around the box multiple times would imply that
particles go through a chain of large pressure bumps that cover
most of the disk. While indeed observations show the presence
of multiple bumps, as the particles drift inward toward regions
of higher gas density, the Stokes number should decrease. This
is not captured in our local setup.

Clearly, the next step is not to prolong high-res but to
move the simulation out of the shearing frame and into a global
disk model.

5. Summary and Conclusions

In this Letter we have tested the limits of planetesimal
formation. Our high-res,A = 0.5 simulation is the highest-
resolution 3D simulation of the SI performed to date. In it, we
inserted a population of millimeter-size dust grains and the
largest axisymmetric pressure bump that is just shy of the size
that would lead to a gravitational instability in the dust. Our key
result is simple:

1. The Z/Π we measured is well above the critical limit
where previous studies (Carrera et al. 2015; Yang et al.
2017; Li & Youdin 2021) found clumping would occur if
this value held over an extended radial region of the disk.

2. We did not observe any strong clumping nor planetesimal
formation.

The likely reason is that the region with high Z/Π (i.e., the
region conductive to the SI) is narrow and the particle crossing
time tcross across this region is shorter than the growth timescale
of the SI tgrow. Whatever progress the particles make toward
strong clumping is lost when they leave the high-Z particle
pileup induced by the bump. This points to an additional
criterion for planetesimals to form by the SI: tcross>
tgrow—i.e., the residence time of particles within a high-Z/Π
region must be long enough to allow the SI to develop filaments.
This result significantly limits the possible pathways for

planet formation:

1. Either protoplanetary disks routinely form grains larger
than 1 mm, or

2. The popular model in which planetesimals form when an
axisymmetric pressure bump triggers the SI is incorrect.

For example, one possible alternative is that planetesimals
form in vortices (e.g., Barge & Sommeria 1995; Lyra et al.
2015; Raettig et al. 2021). Either way, our results call for taking
a hard look at how we understand planet formation, and at the
computer models we use to study it. Our results also highlight
the importance of future instruments, such as the ngVLA, that
can determine whether centimeter-size grains are abundant in
young protoplanetary disks (Ricci et al. 2018).

We thank the anonymous referee for their constructive
comments and new insights. D.C. acknowledges Anders
Johansen and Michiel Lanbrechts for a very fruitful discussion
about the role of residency time and interpretation of our
results. D.C. and J.B.S. acknowledge support from NASA
under Emerging Worlds through grant 80NSSC21K0037. The
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STAMPEDE 2 through XSEDE grant TG-AST120062.
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