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ABSTRACT 
 

Management zones can be delimited using fuzzy logic, a technique that assigns values of degrees 
of pertinence to each pixel of a map. When the value tends to 1, these degrees indicate that there is 
certainty that the pixel belongs to a certain class of the management zone. However, in the 
boundary region between classes, degrees of pertinence do not tend to 1, indicating that there is 
confusion about which class such pixels belong. Depending on the area occupied by confused 
pixels, the use of management zones as a precision agriculture technique can be compromised. 
Thus, the behavior of the area occupied by pixels with different degrees of pertinence was evaluated 
as a function of the amount of information used to generate the management zones. Those zones 
were generated based on altitude, soil apparent electrical conductivity in soil depths of 0.20 m and 
0.40 m, soil water content and clay content. When adding information to generate the management 
zones, there was an increase in the area occupied by pixels with degrees of pertinence lower than 
0.5. However, the insertion of more than one layer of information to delineate the management 
zones improved the concordance between the management zones and the maps of the soil 
attributes. We suggest that some samples should be distributed in the border regions between the 
management zones, when these are delimited from the use of two or more variables. 
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1. INTRODUCTION 
 
Soil properties are susceptible to temporal and 
spatial variation due to intensive agricultural 
activities. As a result, it is of utmost importance a 
continuous follow-up of the soil physical and 
chemical properties throughout the area [1]. 
Within this context, precision agriculture 
proposes a re-organization of the traditional 
agricultural management system by considering 
the spatial variability inside the area, towards a 
low-input, high-efficiency, and sustainable 
agriculture [2,3]. 
 

In order to obtain crop productivity data, 
expressed by maps, it is necessary to perform 
data collection. The more data collected, the 
more consistent is the information generated and 
the diagnosis regarding the variability in the crop 
[3]. However, depending on the area extension 
and the desired sample density, the sampling 
cost may be a limiting factor. Therefore, the 
generation of management zones appears as 
one of the solutions to this impasse [4]. 
 

In order to delimit management zones, several 
variables can be used to generate maps. Some 
of these variables are: soil apparent electrical 
conductivity [5,6,7,8], productivity maps [9,10], 
soil granulometry [11], soil water content [12] and 
images obtained by aerial platforms [13]. As a 
typical geographic information system, the base 
information for mapping the zones is associated 
with Cartesian coordinates, which allow the 
mapping of the area. Classification algorithms 
analyze these information and divide the data 
into distinct zones. Fuzzy logic is commonly used 
for this purpose. 
 

Unlike the conventional logic and the classical 
set theory, the fuzzy logic assigns values of 
degree of pertinence to each classified pixel. 
These values can range from zero to one and 
mean, respectively, that an element does not 
belong to a particular set and that an element 
belongs completely to the classified set. Values 
between zero and one represent partial degrees 
of pertinence. 
 

In the agricultural sector, there are several 
studies that use fuzzy logic to map crop 
productivity. The authors [14] use the fuzzy logic 
to map the fertility of a humic Yellow Red Oxisol 
cultivated with arabica coffee variety, based on 
the sum of bases, cation exchange capacity and 
base saturation, considering the spatial 

variability. The authors [15] applied a GIS-based 
integration model, using fuzzy logic as a function 
of three variables: soil electrical capacity, 
nitrogen adequacy index and elevation, resulting 
in a nitrogen requirement map. The authors [16] 
analyze the fertility of an experimental area, 
based on soil chemical attributes and its relation 
with conilon coffee productivity, using 
geostatistics and the fuzzy classification system. 
 

It is likely that in the border region between the 
management zones, the classified pixels present 
partial degrees of pertinence, which may indicate 
the existence of confusion about which class 
these pixels belong to. Depending on the range 
of the area occupied by the pixels, with confused 
classification, the use of management zones as a 
precision agriculture technique may be 
compromised. Thus, the present study evaluated 
the behavior of the area occupied by pixels with 
different degrees of pertinence, as a function of 
the information used to generate the 
management zones. 
 

2. MATERIALS AND METHODS 
 

2.1 Experimental Site 
 

Soil samples were collected from an area with 
20.2 ha of coffee cultivation (Coffea arabica L.), 
where there is predominance of Yellow Red 
Latosol. The experimental site presents 
mountainous relief, with average altitude of 915 
m, and is located at the coordinates 20° 42' 33" S 
and 42° 34' 17" W. 
 
2.2 Georeferencing of Soil Sampling Sites 
 

The sampling points in the field were allocated 
following a systematized distribution, with a grid 
size of approximately 25 x 25 m, totalizing 275 
points. These were georeferenced using the 
Topographic DGPS (L1), Trimble brand and Pro 
XT model. The differential correction was made 
using the Brazilian Institute of Geography and 
Statistics (IBGE) database. The coordinate 
system used was the UTM, with Datum South 
America 1969 and zone 23S. 
 

2.3 Determination of Soil Attributes 
 

The soil apparent electrical conductivity (ECa) 
was determined using a portable sensor 
manufactured by Landviser©, model 
LandMapper

©
 ERM-02 whose measurement 

occurs by the principle of electrical resistivity. 
The ECa measurement occurred in the soil depth 
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from 0 to 0.20 m and from 0 to 0.40 m. 
Granulometric composition analyses were 
carried out based on the methodology of the 
author [17,18]. Soil water content was 
determined using a real-time sensor 
manufactured by Spectrum Technologies, 
FielScout TDR 300 model, in the same spots 
where the ECa were measured and soil samples, 
for determination granulometric composition 
analyses, were taken. In a radius of 1 meter 
around each of the 275 georeferenced points, 
soil samples were collected. Each sample was 
composed of two simple subsamples in soil 
depth from 0 to 0.20 m. For this, a dutch-type 
auger was used. The soil samples were analyzed 
in the laboratory, in order to obtain the contents 
of pH, phosphorus (P), potassium (K), calcium 
(Ca

2
 
+
) and magnesium (Mg

2
).  

 

The available phosphorus and potassium 
contents were determined by the Mehlich-1 
extractor [19]. The exchangeable contents of 
calcium and magnesium were determined by the 
KCl extractor (1 mol L

-1
). The pH content in water 

was determined using a ratio of 1:2.5 (parts of 
suspended soil: parts of water) by using a 
potentiometer with combined electrode. 
 

2.4 Analysis for Outliers Detection in the 
Database 

 

The database was submitted to a previous 
analysis, in order to detect possible outliers. The 
sample, which had an absolute value higher than 
the average added three times the standard 
deviation and lower than the average subtracted 
three times the standard deviation [20], or if the 
neighboring samples had very different values, 

this would be considered as an outlier and, 
consequently, excluded from the database for 
further analysis. 
 

2.5 Determination of Spatial Variability of 
the Soil Attributes 

 
The collected data were submitted to 
geostatistical analysis for spatial variability 
characterization. The geostatistical analysis 
procedure was performed using the Optimize 
Model feature of the Geostatistical Wizard tool, 
available in ArcGIS v. 10.3. 
 
The spatial models chosen in the semivariogram 
adjustment were those with the lowest root mean 
square error (RMS) in the cross-validation. With 
the spatial models fitted, ordinary kriging was 
used to interpolate the data. Then, maps of the 
spatial variability of altitude, soil water content, 
soil apparent electrical conductivity and soil clay 
content were generated. 
 

2.6 Delimitation of Management Zones 
 
The management zones were established by the 
computer program KRIG-ME [21], based on the 
maps generated by the interpolated data of 
altitude, soil water content, clay content and soil 
apparent electrical conductivity in soil depths 
from 0 to 0.20 m and 0 to 0.40 m. The area was 
divided into three management zones and the 
pixels size of the maps was 5 x 5 m. As a result, 
nine maps were generated containing three 
management zones each. Table 1 shows the 
variables used to define the management zones 
and their respective representations. 

 
Table 1. Variables used to define the management zones and their respective representations 

 
Management
zones 

Variables Representation 

1 Soil apparent electrical conductivity in soil depth of 0.20 m  ZM20 
2 Soil apparent electrical conductivity in soil depth of 0.40 m ZM40 
3 Soil water content ZMU 
4 Soil apparent electrical conductivity in soil depth of 0.20 m and 

altitude 
ZM20A 

5 Soil apparent electrical conductivity in soil depth of 0.20 m and 
soil water content 

ZM20U 

6 Soil apparent electrical conductivity in soil depth of 0.20 m and 
clay content 

ZM20Arg 

7 Soil apparent electrical conductivity in soil depth of 0.20 m, clay 
content and altitude  

ZM40ArgAlt 

8 Soil apparent electrical conductivity in soil depth of 0.20 m, 
altitude and soil water content  

ZM40AltU 

9 Soil apparent electrical conductivity in soil depth of 0.20 m, soil 
water content and clay content  

ZM40UArg 
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2.6.1 Analysis of the degrees of pertinence 
 
The degrees of pertinence of each pixel were 
obtained by the computer program KRIG-ME 
[21], as one of the results of map classification in 
three management zones. As each map was 
divided into three management zones (ZM1, ZM2 
and ZM3), a map pixel should present three 
degrees of pertinence, G1, G2 and G3, referring 
to its possibility of belonging to ZM1, ZM2 and 
ZM3, respectively. The sum of the three degrees 
of pertinence of a pixel must be equal to one. 
Thus, if any of the degrees of pertinence has a 
value greater than 0.5, it means that the pixel to 
be classified in one of the management zones 
has an absolute majority (> 50%) in relation to 
the chance of pertinence to the corresponding 
zone. In this way, the pixels that presented all 
degrees of pertinence lower than 0.5 were 
considered as confused pixels. 
 
After the design of the management zones 1, 2 
and 3, the pixels considered confused were 
separated from the others. With the combination 
of the variables altitudes, soil water content, clay 
content and soil apparent electrical conductivity, 
from soil depths of 0 to 0.20 m and 0 to 0.40 m to 
delimit the management zones, the result of this 
stage were nine maps containing, each of them, 
three management zones and one zone 
composed by the confused pixels. 
 

2.7 Comparison between the Results for 
Each Level of Information Used to 
Generate the Management Zones 

 
The variability of the attributes pH, phosphorus 
(P), potassium (K), calcium (Ca

2+
) and 

magnesium (Mg2) was classified in three 
management zones using the KRIG-ME software 
program [22]. Thus, five additional maps were 
generated, consisting of three management 
zones each. These maps of the areas of 
management of the attributes pH, phosphorus 
(P), potassium (K), calcium (Ca

2+
) and 

magnesium (Mg
2
) were used as reference for 

comparison between the maps containing the 
three management zones and the maps 
containing the zone of confused pixels which, in 
turn, were based on the variables altitude, soil 
water content, clay content and soil apparent 
electrical conductivity in soil depths of 0 to 0.20 
m and 0 to 0.40 m. 
 
This comparison allowed to estimate the Kappa 
concordance coefficient (equation 1) based on 
the data from the error matrix [22]. 

�� = 	
�∑ ���

�
��� �∑ (��⊕�⊕�)

�
���

���∑ (��⊕�⊕�)
�
���

                       (1) 

 
Where: 
 
�� = Kappa coefficient estimation; 
  

��� = value in line i and column i (diagonal) of the 
error matrix; 
 

��⊕ = total in line i; 
 

�⊕� = total in column i; 
 

� = total number of samples; and 
 

� = total number of zones. 
 
The difference between two independent Kappa 
coefficients was tested at a 5% significance level. 
The calculated Z value (equation 2) that 
exceeded the tabulated Z value, corresponding 
to the determined level of significance, reflected 
the lack of statistical equality between the two 
Kappa coefficients, differentiating them 
significantly from each other. If the Kappa 
coefficients are statistically different, it is 
concluded that the confused pixels interfere in 
the result provided by the management zones 
map. Otherwise, the opposite is true. 
 

Z = 	
�������

�σ�������σ������
	                        (2) 

 
Where: 
 
� =  Z standardized and normally distributed 
statistics; 
 

��� e	��� = Kappa coefficients to be compared; 
 

�� = Kappa coefficient variance. 
 

3. RESULTS AND DISCUSSION 
 

3.1 Spatial Variability 
 

Figs. 1 and 2 show the results of the spatial 
variability characterization of the attributes used 
in the present work. It can be observed in Fig. 1 
that there is a similarity in the spatial patterns 
between the attributes ECa20, ECa40 and soil 
water content. This can be justified by the              
fact that soil water content has an influence on 
soil apparent electrical conductivity [23,24,25]. 
Also, it can be analyzed by the comparison 
between the maps of soil apparent electrical 
conductivity and the calcium and magnesium 
attributes, that there are similarities between their 
spatial distribution patterns, which can be an 

 
�����

�

− �(��⊕�⊕�)

�

�� − �(��⊕�⊕�)

�



indication that the ECa is a good parameter for 
defining management classes for these 
attributes. 
 
In the maps of altitude and clay cont
it is possible to verify the most continuous spatial 
 

Fig. 1. Maps of spatial variability of the attributes used in the management zones delimitation
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indication that the ECa is a good parameter for 
defining management classes for these 

In the maps of altitude and clay content variables 
it is possible to verify the most continuous spatial 

patterns among all the generated maps. This 
feature makes those information relevant to the 
delimitation of the management zones, because 
the more continuous the delimited zones, the 
easier it will be to manage the application of 
inputs at a variable rate. 

 
Fig. 1. Maps of spatial variability of the attributes used in the management zones delimitation
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patterns among all the generated maps. This 
feature makes those information relevant to the 
delimitation of the management zones, because 
the more continuous the delimited zones, the 

it will be to manage the application of 

 

Fig. 1. Maps of spatial variability of the attributes used in the management zones delimitation 



It can be observed in Fig. 2 that the use of more 
than one layer of information in the definition of 
management zones can be interesting, if this 
information contains characteristics of interest, 
such as spatial continuity and similarity with the 

Fig. 2. Maps of spatial variability of the soil atributes
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It can be observed in Fig. 2 that the use of more 
than one layer of information in the definition of 
management zones can be interesting, if this 
information contains characteristics of interest, 
such as spatial continuity and similarity with the 

spatial pattern of the attributes of interest, for soil 
fertility correction. The authors [26] and [21] 
indicate that the use of two information for 
delimitation of management zones provides 
better results. 

 
Maps of spatial variability of the soil atributes 
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attern of the attributes of interest, for soil 
fertility correction. The authors [26] and [21] 
indicate that the use of two information for 
delimitation of management zones provides 
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3.2 Comparison of Sampling Strategies 
 

As the area was classified in three management 
zones, if the degrees of pertinence (G1, G2 and 
G3) of a given pixel are equal to 0.33, it indicates 
that this pixel reached the highest possible level 
of confusion. Among the matrices of pertinence 
generated after the design of the management 
zones, only those generated on the basis of two 
and three variables presented pixels with 
degrees of pertinence mathematically close to 
0.33, as represented in Table 2. 
 

As the number of information used to define the 
management zones increased, the area 

occupied by confused pixels grew, with degrees 
of pertinence less than 0.5, as shown in Fig. 3. 
The confused pixels may belong to zones 
different from those that they were initially 
classified. Thus, the larger the area occupied by 
these pixels, the greater the possibility of a 
wrong decision regarding the treatment that this 
area should receive. 
 

An area with uncertain classification may           
receive a management beyond or below          
what is necessary. It may occur that the area 
requires simpler management (lower cost),              
but instead it receives a treatment that will result 
in waste of the input, or even the area receives a

 
Table 2. Highest degrees of pertinence and quantity of pixels per management zone 

 
Management 
zone 

Representation Highest degree of pertinence Number of pixels 

1 ZM20 0.47 9 
2 ZM40 0.47 6 
3 ZMU 0.46 5 
4 ZM20A 0.35 5 
5 ZM20U 0.39 1 
6 ZM20Arg 0.34 4 
7 ZM40ArgAlt 0.34 36 
8 ZM40AltU 0.34 2 
9 ZM40UArg 0.34 3 

 
Table 3. Kappa coefficient of concordance between management zones and soil attributes 

maps 
 

Variables Management 
Zone 

Kappa 

pH Phosphorus Potassium Calcium Magnesium 

1 ZM20 0.20A** 0.08A 0.20A 0.26A 0.25A 
ZM20C* 0.20A 0.08A 0.20A 0.25A 0.25A 
ZM40 0.09

B
 0.11

B
 0.13

B
 0.10

B
 0.13

B
 

ZM40C
*
 0.09

B
 0.11

B
 0.13

B
 0.09

B
 0.13

B
 

ZMU 0.19
A
 0.12

B
 0.08

C
 0.24

A
 0.28

C
 

ZMUC
*
 0.19

A
 0.12

B
 0.07

C
 0.19

C
 0.28

C
 

2 ZM20A 0.28
C
 0.12

B
 0.27

D
 0.35

D
 0.42

D
 

ZM20AC
*
 0.19

A
 0.12

B
 0.07

C
 0.24

A
 0.28

C
 

ZM20U 0.21
D
 0.08

A
 0.19

A
 0.30

E
 0.33

E
 

ZM20UC* 0.20A 0.09A 0.19A 0.29E 0.31E 
ZM20Arg 0.28C 0.20C 0.26D 0.20C 0.22F 
ZM20ArgC* 0.24E 0.19C 0.24E 0.18C 0.21F 

3 ZM20AltArg 0.47F 0.09A 0.19A 0.39F 0.37G 
ZM20AltArgC* 0.39G 0.19C 0.17F 0.35D 0.37G 
ZM20AltUmi 0.41G 0.14D 0.14B 0.37D 0.34E 
ZM20AltUmiC

*
 0.36

H
 0.13

B
 0.12

B
 0.33

D
 0.31

E
 

ZM20UArgUmi 0.20
A
 0.17

E
 0.14

B
 0.29

E
 0.29

C
 

ZM20UArgUmiC
*
 0.16

I
 0.13

B
 0.12

B
 0.25

A
 0.25

A
 

*
 Management zones with area represented by pixels classified as confused; 

*
 Different letters in the columns 

indicate statistical difference at a 5% level of significance 
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Fig. 3. Area occupied by pixels with degrees of pertinence lower than 0.5 (C%) 
 
management that is less than necessary, 
resulting in ineffective treatment and, 
consequently, in a decrease in productivity. In 
both cases, financial losses occur. Thus, the 
management zones generated with more than 
two variables may be more sensitive to these 
problems, since the area occupied by confused 
pixels may correspond to 20% of the total area 
(Fig. 3). 
 
In general, the insertion of more than one layer of 
information to delimit the management zones, 
although it increased the area occupied by 
confused pixels, it also improved the 
concordance of the management zones with the 
maps of the soil attributes (Table 3). Comparing 
the concordances of the management zones 
maps without the distinction of the confused 
pixels with the concordances of the management 
zones maps without the confused pixels, it is 
noticed that in most cases there was no 

significant difference between them. This result is 
specifically observed in cases where one or two 
variables were used to delimit the management 
zones. In other words, the confused pixels did 
not interfere in the concordance between the 
management zones and the maps of the soil 
attributes. The exception occurred when the 
management zones were delimited using three 
variables. 
 
In order to practice precision agriculture, these 
results show that fuzzy logic can be used to 
delimit management zones. However, when 
more than one information is used to delimit the 
zones, and at the moment of the variables 
sampling after this delimitation, we suggest that 
some samples should be distributed in the 
boundary regions between the zones. Thus, it is 
possible to better analyze which zone a given 
area belongs to, using information from the 
attributes to be surveyed in the area. 
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4. CONCLUSION 
 
Fuzzy logic has proven to be an efficient 
technique to delimit management zones. Even 
though there are confused pixels in the 
classification, the final result is not negatively 
influenced by the uncertainty of the technique. 
 
The use of more than one information for the 
delimitation of management zones increased the 
concordance between the defined management 
zones and the maps of soil attributes. 
 
We suggest that some samples should be 
distributed in the border regions between the 
management zones, when these are delimited 
from the use of two or more variables. 
 

ACKNOWLEDGEMENTS 
 
The authors are grateful to the Coordination of 
Improvement of Higher Education Personnel 
(CAPES), National Council of Scientific and 
Technological Development (CNPq) and 
Foundation for Research Support of Minas 
Gerais (FAPEMIG) for their financial support. 
 

COMPETING INTERESTS 
 
Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 
1. Samouëlian A, Cousin I, Tabbagh A, 

Bruand A, Richard G. Electrical resistivity 
survey in soil science: A review. Soil and 
Tillage Research. 2005;83(2):173-193. 
DOI: 10.1016/j.still.2004.10.004 

2. Zhang N, Wang M, Wang N. Precision 
agriculture - a worldwide overview. 
Computers and Electronics in Agriculture. 
2002;36(2-3):113-132. 
DOI: 10.1016/S0168-1699(02)00096-0 

3. Molin JP, Amaral LR, Colaço AF. Precision 
agriculture. 1

st
 Ed. São Paulo: Texts 

Workshop; 2015. Portuguese 
4. Rodrigues FAJ, Vieira LB, Queiroz DM, 

Santos NT. Generation of management 
zones for coffee cultivation using SPAD 
sensor and leaf analysis. Brazilian Journal 
of Agricultural and Environmental 
Engineering. 2011;15(8):779-787. 
Portuguese 
DOI: 10.1590/S1415-43662011000800003 

5. Luchiari AJ, Borghi E, Avanzi JC, Freitas 
AA, Bortolon L, Bortolon ESO, Inamasu 
RY. Management zones: Theory and 
practice. Precision agriculture: A new look. 
São Carlos: Embrapa Instrumentation. 
2011;60-64. Portuguese 

6. Oliveira FA, Franchini JC, Debiasi H. 
Spatial variability of soybean yield and 
electrical conductivity of a Bruno Oxisol. 
Precision agriculture: A new look. São 
Carlos: Embrapa Instrumentation Farming. 
2011;148-152. Portuguese 

7. Resende AV, Vilela MF. Overall 
evaluation, results and perspectives of the 
use of precision agriculture in annual 
crops. Precision agriculture: A new look. 
São Carlos: Embrapa Instrumentation. 
2011;69-72. Portuguese 

8. Vilela MF, Hurtado SMC, Resende AV, 
Corazza EJ, Marchao RL, Oliveira CM, 
Goulart AMC. Preliminary mapping of 
management zones in a corn-soybean 
production system in the Cerrado biome. 
Precision agriculture: A new look. São 
Carlos: Embrapa Instrumentation. 2011; 
189-193. Portuguese 

9. Souza ZM, Domingos GPC, Marcelo JC, 
Luiz HAR, Paulo SGM, Rafael JAM. 
Analysis of soil attributes and productivity 
of sugarcane cultivation using geostatistics 
and decision tree. Rural Science. 
2010;40(4):840-847. Portuguese 

10. Passos MC, Veridiana ZM, Francisco 
CBLP, Marcelo VA, Claudinei K, Flávio 
CD. Productivity of eucalyptus wood 
correlated with soil attributes aiming at the 
mapping of specific areas of management. 
Rural Science. 2012;42(10):1797-1803. 
Portuguese 

11. Souza ZM, Marques JJ, Pereira GT, 
Barbieri DM. Spatial variability of the 
texture of a Red Eutrophic Latosol under 
sugarcane cultivation. Agricultural 
Engineering. 2004;24(2):309-319. 
Portuguese 

12. Nascimento PS, Silva JA, Costa BRS, 
Bassoi LH. Homogeneous areas of soil 
attributes for irrigation management in 
grape orchards. Brazilian Journal of          
Soil Science. 2014;38(4):1101-1113. 
Portuguese 
DOI: 10,1590/S0100-06832014000400006 

13. Araújo JC, Vettorazzi CA, Molin JP. 
Estimation of productivity and 
determination of management zones, in 
grain crops, through multispectral aerial 



 
 
 
 

Nascimento et al.; JEAI, 30(5): 1-10, 2019; Article no.JEAI.46239 
 
 

 
10 

 

videography. Acta Scientiarum. Biological 
Sciences. 2005;27(3):437-447. Portuguese 

14. Silva SA, Lima JSS. Fuzzy logic in the 
mapping of variables indicative of soil 
fertility. Idesia (Arica). 2009;27(3):41-46. 
Portuguese  
DOI: 10.4067/S0718-34292009000300007 

15. Tremblay N, Bouroubi Y, Panneton B, 
Vigneault P, Guillaume S. Space, time, 
remote sensing and optimal nitrogen 
fertilization rates: A fuzzy logic approach. 
GIS applications in agriculture. Boca 
Raton: CRC Press; 2011. 

16. Silva SA, Lima JSS, Souza GS, Oliveira 
RB, Xavier AC. Fuzzy logic in the 
evaluation of soil fertility and coffee conilon 
productivity. Journal of Agronomic 
Science. 2010;41(1):9-17. Portuguese 

17. Ruiz HA. Physical dispersion of the soil for 
particle size analysis by slow agitation. In: 
Brazilian Soil Science Congress, 30, 
Recife: UFRPE. 1 CD-ROM. 2005a;4. 
Portuguese 

18. Ruiz HA. Increasing the accuracy of soil 
particle size analysis by collecting the 
suspension (silt + clay). Brazilian Journal 
of Soil Science. 2005b;29:297-300. 
Portuguese 
DOI: 10.1590/S0100-06832005000200015 

19. Mehlich A. Mehlich-3 soil test extractant: A 
modification of Mehlich-2 extractant. 
Communications in Soil Science & Plant 
Analysis; 1984. 
DOI: 10.1080/00103628409367568 

20. Barnett V, Lewis T. Outliers in statistical 
data. 3rd Ed. Hoboken: John Wiley & Sons; 
1994. 

21. Valente DSM, Queiroz DM, Pinto FAC, 
Santos NT, Santos FL. Definition of 
management zones in coffee production 
fields based on apparent soil electrical 
conductivity. Scientia Agricola. 2012;69(3): 
173-179.  
DOI: 10.1590/S0103-90162012000300001 

22. Congalton RG. A review of assessing the 
accuracy of classifications of remotely 
sensed data. Remote Sensing of 
Environment. 1991;37(1):35-46. 
DOI: 10.1016/0034-4257(91)90048-B 

23. Stadler A, Rudolph S, Kupisch M, 
Langensiepen M, Kruk JV. Quantifying the 
effects of soil variability on crop growth 
using apparent soil electrical conductivity 
measurements. European Journal of 
Agronomy. 2015;64:8-20. 
DOI: 10.1016/j.eja.2014.12.004 

24. Tang CS, Wang DY, Zhu C, Zhou QY, Xu 
SK, Shi B. Characterizing drying-induced 
clayey soil desiccation cracking process 
using electrical resistivity method. Applied 
Clay Science. 2018;152:101-112. 
DOI: 10.1016/j.clay.2017.11.001 

25. Kaufhold S, Dohrmann R, Klinkenberg M, 
Noell U. Electrical conductivity of 
bentonites. Applied Clay Science. 
2015;114:375-385. 
DOI: 10.1016/j.clay.2015.05.032 

26. Kitchen NR, Sudduth KA, Myers DB, 
Drummond ST, Hong SY. Delineating 
productivity zones on claypan soil fields 
using apparent soil electrical conductivity. 
Computer and Electronics in Agriculture. 
2005;46(1-3):285-308. 
DOI: 10.1016/j.compag.2004.11.012

_________________________________________________________________________________ 
© 2019 Nascimento et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution 
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any 
medium, provided the original work is properly cited. 

 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

http://www.sdiarticle3.com/review-history/46239 


