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Abstract.	 This	 is	 the	 second	 section	 of	 the	 review-tutorial	 paper	 describing	
fundamentals	of	tissue	optics	and	photonics.	As	the	first	section	of	the	paper	was	mostly	
devoted	 to	 description	 of	 biological	 tissue	 structures	 and	 their	 specificity	 related	 to	
interactions	with	 light	 [1],	 this	section	3	describes	 light-tissue	 interactions	 themselves	
that	 are	 caused	 by	 tissue	 dispersion,	 scattering,	 and	 absorption	 properties,	 including	
light	reflection	and	refraction,	absorption,	elastic,	and	quasi-elastic	scattering.	The	major	
tissue	absorbers	and	modes	of	elastic	scattering,	including	Rayleigh	and	Mie	scattering,	
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2.1 General definitions and characteristics 
2.2 Soft tissues 
2.3 Hard tissues 
2.4 Tissue structural anisotropy 
2.5 Blood, lymph and other bioliquids 

3 Light-tissue interaction: absorption, scattering and 
polarization 

3.1 Light reflection and refraction 
3.2 Light absorption and elastic scattering 

3.2.1 Absorption and tissue absorbers 
3.2.2 Scattering – basic definitions 
3.2.3 Rayleigh scattering 
3.2.4 Mie scattering 
3.2.5 Multiple scattering 

3.3 Scattering of the coherent light 
3.3.1 Random phase screen concept and speckle 
formation 
3.3.2 Speckle interferometry 
3.3.3 Low-coherent light interferometry – optical 
coherence tomography 

3.4 Dynamic light scattering 
3.4.1 Quasi-elastic light scattering (QELS) and 
Doppler effect 
3.4.2 Dynamic speckles 
3.4.3 Speckle pattern blurring effect – full-field 
velocity measurements 

3.5 Diffusion wave spectroscopy 
3.6 Interaction of the polarized light with tissues 

3.6.1 Definitions 
3.6.2 Single scattering and quasi-ordered tissues 
3.6.3 Multiple scattering 

3.7 Refractive index and controlling of light 
interaction with tissues 

3 Light-tissue interaction: absorption, 
scattering and polarization  

3.1 Light reflection and refraction  
A biological tissue is a dielectric medium whose 
average refractive index is higher than that of air [1-5]. 
Thus at interaction with tissue surface the light radiation 
is able to undertake partial reflection at the tissue/air 
interface (Fresnel reflection), while the remaining part 
penetrates the tissue (see Fig. 3.1a) [6-8]. Light 
refraction is the change in direction of a ray of light 
when passing obliquely from one medium into another 
in which the light speed (refractive index) is different. 
Light refraction is characterized by the relative index of 
refraction, m, of these two media with n1 and n2 indices, 
n2 > n1. For different human tissues and tissue 
components, refractive index (RI) in the visible/NIR 
wavelength range varies from a value a little bit higher 
than for water due to influence of some organic 
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a      b 

	 	 	
c      d 

Fig. 3.1 Light interaction with a nonscattering tissue with mean index of refraction n2≡ntissue, n1 is the index of refraction 
of a surrounding medium; ntissue > n1: (a) illustrates light reflection by and transmission through the flat interface of a 
tissue surface and surrounding medium; (b) illustrates the Brewster angle ϕBrewster – the angle of incidence at which light 

polarized in the incident light plane (p) is perfectly transmitted; for skin stratum corneum with n2 ≅ 1.5 and n1=1,
ϕBrewster ≅ 57о; (c) illustrates total internal reflection of light when it goes from a medium with a higher index of 
refraction (n2) to a medium with the lower one (n1) in the case of a flat interface between two nonscattering media; for 
skin stratum corneum with n2 ≅ 1.5 and n1=1, ϕcritical ≅ 45о; (d) illustrates light reflection, transmission and scattering by 
rough interface of a scattering tissue and surrounding media. 

components, n2 ≅ 1.35 for interstitial fluid, to 1.62 for 
tooth enamel. 

In Fig. 3.1b, p polarization denotes that the electric 
field is polarized parallel to the plane of incidence (the 
same plane as the incident, reflected and transmitted 
rays). As well as s polarization denotes that the electric 
field is polarized perpendicular the plane of incidence. 
To describe polarized light reflectance (Rp and Rs) by 
and transmittance (Tp and Ts) through a flat (not rough) 
interface of transparent (not scattering) tissue Fresnel 
formulas can be used [6-8] 

Rp =
tan2 ϕ − ψ( )
tan2 ϕ +ψ( ) , (3.1) 

Tp =
sin 2ϕsin 2ψ

sin2 ϕ +ψ( )cos2 ϕ − ψ( ) , (3.2) 

Rs =
sin2 ϕ − ψ( )
sin2 ϕ +ψ( ) , (3.3) 

Ts =
sin 2ϕsin 2ψ
sin2 ϕ +ψ( ) , (3.4) 

where Rp, Rs and Tp, Ts are reflectance and transmittance, 
respectively, or the ratios of the reflected (Irp, Irs) and 
transmitted (Itp, Its) intensities to the incident intensity 
for each polarization state in the incident light plane (p) 
and the orthogonal plane (s), Iip and Iis, respectively; ϕ is 
the incident angle (equal to reflection angle) and ψ is 
the angle of refraction; these angles are defined by the 
indices in accordance with the Snell's law 

n1 sinϕ = n2 sinψ ; (3.5) 

and can be expressed in terms of the relative index of 
refraction m 

n2
n1

= m . (3.6) 

For the specific light incident angles, the reflectivity 
and transmittance are described by the following 
formulas:  

At the normal incidence to the surface (ϕ = 0o ),  

Rp = Rs = R = m −1
m+1

⎛
⎝⎜

⎞
⎠⎟

2

,  (3.7) 
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Tp = Ts = T = 4m

m+1( )2
; (3.8) 

At the incidence angle that produces a rectangular 
angle between the reflected and refracted rays which is 
called the Brewster angle (ϕBrewster + ψ = 90o), or   

ϕBrewster = arctanm , (3.9) 

Rp = 0 , Rs ≠ 0 , i.e., this is an angle of incidence at 

which light with a particular polarization p is perfectly 
transmitted, at other angles the reflected light is partially 
polarized (see Fig. 3.1b); 

At the incidence of light from the medium with a 
higher RI (n2) into the medium with the lower RI (n1) 
(see Fig. 3.1c) a so called critical angle ϕcritical exists for 
which if incident angle ϕ ≥ ϕcritical  total internal 
reflection (no transmitted light) is created 

ϕcritical = arcsinm . (3.10) 

All these formulas are applicable only to 
homogeneous media with flat interface between. Thus 
they could be applied only locally for a limited number 
of tissues such as healthy eye cornea, lens and vitreous 
body (see Fig. 2.6) [1]. However, the major types of 
tissues are optically inhomogeneous (turbid) and 
absorptive multilayered media with rough interfaces. In 
that case light scattering from the interface and from 
bulk of a tissue will influence light reflection and 
transmission with the redistribution of light in the space 
(see Fig. 3.1d). 

 

Fig. 3.2 Schematic representation of different modes of 
light interaction with tissues [9]. 

Actually, in tissues multiple scattering and 
absorption processes are responsible for light beam 
broadening and eventual decay as it travels through a 
tissue, whereas bulk scattering is a major cause of the 
dispersion of a large fraction of radiation in the 
backward direction (see Figs. 3.2 and 3.3) [9]. Therefore 
light propagation within a tissue depends on the 
scattering and absorption properties of its components: 
cells, cell organelles, and various fiber structures. The 
size, shape, and density of these structures, their 
refractive index, and the polarization state of the 

incident light predetermine the character of light 
propagation in tissues.  

     
a                          b                           c 

Fig. 3.3 Light beam absorption and scattering by a 
tissue: a — absorption prevails, is typical for UV or 
MIR/FIR radiation, no light propagates into tissue; b — 
absorption and scattering are approximately equal to 
each other, is typical for some range in the NIR, light 
beam propagates well with some amount of scattered 
radiation; c — scattering prevails, is typical for visible 
and NIR, a significant light beam broadening with 
diffusive irradiation of large tissue volume [9]. 

3.2 Light absorption and elastic scattering  
3.2.1 Absorption and tissue absorbers  

The process of light absorption is the transformation of 
light energy to some other form of energy, i.e. heat, 
sound, fluorescence as the light transverses tissue. 
Commonly an absorbing medium consists of absorption 
centers that are particles or molecules that absorb light. 
To characterize absorption of a medium an absorption 
coefficient µa is introduced as the reciprocal of the 
distance d over which light of intensity I0 is attenuated 

to I d( ) = I0e ≈ 0.37I0 , which follows from the 

exponential law for light propagation in a tissue layer of 
thickness d (Fig.3.4) [2-5] 

I d( ) = I0 exp −µad( ) , (3.11)  

where I(d) is the intensity of transmitted light, W/cm2; 
µa is typically expressed in  cm−1.  

Behind this definition is a fundamental process of 
photon absorption that is characterized by an effective 
cross section, i.e., the ability of a molecule to absorb a 
photon of a particular wavelength. Although the units 
are given as an area, it does not refer to an actual size 
area, at least partially because the density or state of the 
target molecule will affect the probability of absorption. 
Quantitatively, the number dN of photons absorbed, 
between the points x and x + dx along the path of a light 
beam is the product of the number N of photons 
penetrating to depth x multiplied by the absorption cross 
section σabs (cm2) and by the number of absorbing 
molecules per unit volume ρM (cm–3) (Fig.3.4):  

dN
dx

= −ρMσabsN , (3.12)  
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where 

µa = ρMσabs . (3.13) 

 

Fig. 3.4 Light beam attenuation due to absorption and 
scattering. 

In spectroscopy a few terms are commonly used, 
such as absorbance that is the ratio of the absorbed light 
intensity to the incident intensity, thus, it is a 
dimensionless quantity, and absorption spectrum that is 
the spectrum formed by light that has passed through a 
medium in which light of certain wavelengths was 
absorbed.  

The wavelength dependent optical depth τλ which is 
defined as, 

τλ = ln
I0
I

⎛
⎝⎜

⎞
⎠⎟
= µad = ελcad , (3.14) 

is also often used. Here ελ is the extinction coefficient at 
the wavelength λ in L/(mmol⋅cm), ca is the 
concentration of absorbing substance in mmol/L, and d 
is in cm. 

Absorption spectra can be also expressed in terms of 
the wavelength dependence of absorption coefficient. 
Such UV-visible-IR spectra for the major tissue 
absorbers (chromophores): water, lipids, oxy- and 
deoxyhemoglobin are presented in Fig. 3.5. The 
diagnostic/therapeutic spectral window, where tissue 
absorption is minimal and light penetrates deeper into a 
tissue, is found between 700 nm and 1100 nm, and two 
more narrow and less transparent windows are around 
1300 nm and 1600 nm. Because water is the major 
component of any tissue, the absorption coefficient of 
water is often dominates in the total absorption 
coefficient of a tissue in a particular wavelength range, 
especially in the IR (see Fig. 3.5).  

Absorption is only one way by which light can 
interact with the tissue to induce photothermal and 
photochemical effects followed up by a chain of 
biological effects [2-5, 10-21]. Absorption of the UV 
and visible/NIR light in tissue is due to electronic 
excitation of aromatic or conjugated unsaturated 
chromophores. A chromophore is a chemical that 
absorbs light with a characteristic spectral pattern. There 
are many kinds of chromophores in the tissue, but a few 
major chromophores predominantly determine the 
optical absorption within each tissue layer. As an 
example, spectral ranges of absorption of the main 

human skin chromophores are presented in Fig.3.6. 
Proteins found in the epidermis contain the aromatic 
amino acids tryptophan and tyrosine which have a 
characteristic absorption band near 270–280 nm; 
urocanic acid and the nucleic acids also contribute to 
this absorption band with a maximum near 260–270 nm. 
Epidermal melanin plays an important role in limiting 
the penetration depth of light in the skin: it effectively 
absorbs at the wavelengths from 300 to 1000 nm, but 
the strongest absorption occurs at shorter wavelengths, 
in the near UV spectral range. 

a  

b  

c  

Fig. 3.5 Absorption spectra (expressed in terms of 
absorption coefficient, µa, cm–1) of the main tissue 
chromophores: Visible-NIR range (water – H2O, Lipids, 
oxyhemoglobin – HbO2, deoxyhemoglobin – Hb) (a); 
NIR (water – H2O, Lipids – in the form of human fat) 
(b); UV-visible-IR (water) (c) [2-5]. 

The same as for any soft tissue in the IR spectral 
range, the skin absorption is essentially determined by 
the absorption of water contained in the skin (see Fig. 
3.5). The oxyhemoglobin, deoxyhemoglobin, bilirubin, 
carotenoids and porphyrins are the major chromophores 
of skin derma (see Fig. 3.6) [2-5, 10-21]. The 
oxyhemoglobin has its strongest absorption band at 415 
nm (Soret band), and it has two secondary absorption 
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bands at 542 and 577 nm (Q-bands). The 
deoxyhemoglobin has a primary absorption band at 430 
nm and it has a single secondary absorption band at 555 
nm. Both hemoglobins exhibit the lowest absorption at 
wavelengths longer than 620 nm. The bilirubin has two 
relatively broad absorption bands near 330 and 460 nm.      

 
Fig. 3.6 Spectral ranges of absorption of the main 
human skin and other tissue chromophores; FAD – 
flavin dinucleotide, NADH – the reduced form of 
coenzyme nicotinamide adenine dinucleotide (NAD), 
ATP – adenosine triphosphate.  

Porphyrin–based fundamental biological 
representatives in tissues include not only hemoglobin 
but also other heme (iron contained) proteins, such as 
myoglobin and cytochromes, and vitamin B-12 (cobalt 
contained), and several others. Heme proteins serve 
many roles, like O2 storage and transport (haemoglobin 
and myoglobin), electron transport (cytochromes b and 
c), and O2 activation and utilization (cytochrome c 
oxidase). As shown in Fig. 3.5a, the UV/visible 
absorption spectrum of the highly conjugated porphyrin 
macrocycle exhibits an intense feature (absorption 
coefficient ∼3×103cm–1) at about 400 nm (the “Soret” 
band), followed by several weaker absorptions (Q-
bands) at higher wavelengths (from 450 to 700 nm for 
different heme proteins). 

The enzyme cytochrome c oxidase (or cytochrome 
complex IV, or cytochrome-aa3) is a large 
transmembrane protein complex located within the cell 
mitochondria. It catalyzes the final step of the 
respiratory chain in which oxygen is reduced to water. 
The enzyme contains two copper centers, denoted CuA 
and CuB. When the enzyme is oxidized, the CuA center 
is responsible for the distinctive broad absorption band 
around 820–830 nm. This band disappears when the 
enzyme is reduced, which allows one by measuring the 
amplitude of the band to track oxygen utilization 
directly to the site of ATP synthesis.  

Myoglobin is found in muscle and its high affinity 
for oxygen means that it does not offload its oxygen 
until very low tissue oxygen pressures are reached. In 
muscle it serves as a reservoir to store and then slowly 
release the oxygen delivered by blood hemoglobin. The 
NIR absorption spectrum of myoglobin is essentially 

identical to that of hemoglobin, so that it is not possible 
to monitor it independently without resorting to a 
supplementary technique. 

3.2.2 Scattering – basic definitions  

Tissues are not only absorbing but also inhomogeneous 
media with different levels of organization that include 
cells, cell organelles and inclusions (see Figs. 2.2 [1] 
and 3.7), and different fiber and tubular/lamellar 
structures (see Figs. 2.5-2.11) [1]. In view of the great 
diversity and structural complexity of tissues, the 
development of an adequate optical model accounting 
for the scattering and absorption of light is often the 
most complex step of a study [2-5, 10-21]. Many tissues 
are composed of structures with a wide range of sizes 
(see Fig. 3.7), and can be represented as a system of 
discrete scattering particles. Such model has been used 
to describe the angular dependence of the intensity and 
polarization properties of scattered radiation. Blood is 
one of the biological examples of a disperse system that 
entirely corresponds to the model of discrete particles. 

Biological media are often modeled as ensembles of 
homogeneous spherical particles with refractive index 
higher than surroundings (see Fig. 3.8), since many 
cells, cell organelles and biological macromolecules are 
close in shape to spheres or ellipsoids [2-5, 10-21]. A 
system of noninteracting spherical particles is the 
simplest tissue model. The Rayleigh and Mie theories or 
their combination are basic to calculate tissue scattering 
properties. In particular, Mie theory rigorously describes 
the diffraction (elastic scattering) of light by a spherical 
particle. The advances of this theory account the 
structures of the spherical particles, namely, the 
multilayered spheres and the spheres with radial 
nonhomogeneity, anisotropy, and optical activity. 

For connective tissue which composed of fiber 
structures, a system of long cylinders is the most 
appropriate model to describe light scattering. Muscular 
tissue, skin dermis, dura mater, eye cornea and sclera 
belong to this type of tissue formed essentially by 
collagen fibrils. The solution of the problem of light 
scattering by a single homogeneous or multilayered 
cylinder is also well understood. 
At transport (travel) in the inhomogeneous (turbid) 
medium with absorption a photon (light wave) changes 
its direction (wave vector) due to reflection, refraction, 
and diffraction on microscopic internal structures, and 
can be absorbed by an appropriate molecule on its way 
[2-5, 10-21]. Such structures which are smaller or 
comparable with the wavelength of the propagating 
light are called commonly scatterers and light scattering 
means change in direction of light propagation in a 
turbid medium. There are a number of parameters that 
describe scattering process. Scattering angle is related to 
photon scattered by a particle so that its trajectory is 
deflected by a deflection (scattering) angle θ in the 
scattering plane and by an azimuthal angle of scattering 
φ (0 to 2π) in the plane perpendicular to the scattered 
photon trajectory (Fig. 3.9). Scattering plane is a plane  
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Fig. 3.7 Light scattering tissue and cell structures 

	
Fig. 3.8 Index of refraction of tissue and cell structures, the RI values depend on the wavelength which is sometimes in 
the range from UV to NIR, but mostly in the visible. 
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defined by positions of a light source, a scattering 
particle, and a detector. 

To characterize scattering efficiency of a medium a 
scattering coefficient µs is introduced, in a nonabsorbing 
sample it is defined as the reciprocal of the distance d 
over which light of intensity I d = 0( ) = I0  is attenuated 

(due to scattering) to I d( ) = I0e ≈ 0.37I0 , which follows 

from the exponential law for light propagation in a 
tissue layer of thickness d (Fig.3.4) 

I d( ) = I0 exp −µ sd( ) , (3.15)  

where I(d) is the intensity of transmitted light, W/cm2; 
µs is typically expressed in  cm−1.  

Behind this definition is also a fundamental process 
of photon scattering that is characterized by a photon 
scattering cross section, i.e., the ability of a particle to 
scatter a photon of a particular wavelength and 
polarization. Although the units are given as an area, it 
does not refer to an actual size area. Quantitatively, the 
number dN of photons scattered, between the points x 
and x + dx along the path of a light beam is the product 
of the number N of photons penetrating to depth x 
multiplied by the scattering cross section σsca (cm2) and 
by the number of scattering particles per unit volume ρp 
(cm–3) (Fig.3.4):  

dN
dx

= −ρpσscaN , (3.16)  

where 

µ s = ρpσsca . (3.17) 

Equation (3.15) is valid if scattering is not strong 
and only the unscattered portion of transmitted light 
beam (so called ballistic photons) are detected. Such 
regime could be more or less realized for thin tissue 
layers when absorption is high enough to eliminate 
multiple scattering events. Therefore, a collimated 
(laser) beam is attenuated in a thin tissue layer of 
thickness d in accordance with the 
Bouguer−Beer−Lambert law   

I d( ) = 1− RF( ) I0 exp −µ td( ) , (3.18)  

where I(d) is the intensity of transmitted light measured 
using a distant photodetector with a small aperture (on-
line or collimated transmittance), W/cm2; RF is the 
coefficient of Fresnel reflection; at the normal beam 

incidence, RF =
m −1( )2
m+1( )2

; m is the relative mean 

refractive index of tissue and surrounding medium of 

the incident half-space (see Eq. (3.7)); I0 is the incident 
light intensity, W/cm2;  

µ t = µa + µ s  (3.19) 

is the interaction or total attenuation coefficient. The 
attenuation is a decrease in energy per unit area of a 
light beam which occurs as the distance from the source 
increases and is caused by absorption and scattering.  

Often such characteristic of turbid materials and 
tissues as albedo for single scattering is useful for 
prediction of light propagation in a tissue. Albedo is the 
ratio of the scattering to extinction coefficient, 

Λ =
µ s
µ t

. (3.20) 

It ranges from zero for a completely absorbing medium 
to unity for a completely scattering medium.  

Besides scattering coefficient and albedo, scattering 
process is also characterized by a so called scattering 
phase function – the function that describes the 
scattering properties of the medium and is in fact the 
probability density function for a photon travelling in 
some direction to be scattered in some new direction 
p(θ, ϕ). Figure 3.9 illustrates geometry of the scattering 
of light by a particle, where the incident light beam ( !s0 ) 
is parallel to the z-axis and θ and ϕ are the scattering 
angles in the scattering plane and in the plane 
perpendicular to the scattering plane, respectively [22]. 
Scattering phase function characterizes an elementary 
scattering act. If scattering is symmetric relative to the 
direction of the incident wave, then the phase function 
depends only on the scattering angle θ (angle between 
two directions, new ( !s1 ) and former one ( !s0 )), p(θ). 

Scattering anisotropy factor, g, is a major parameter 
of p(θ) and is a measure of the amount of forward 
direction retained after a single scattering event [2-5, 
10-23]. If a photon is scattered by a particle so that its 
trajectory is deflected by a scattering angle θ, then the 
component of the new trajectory which is aligned in the 
forward direction is presented as cosθ. There is an 
average scattering angle and the mean value of cosθ is 
defined as the anisotropy factor  

g ≡ cosθ = p θ( )cosθ
0

π

∫ ⋅2π sinθdθ .  (3.21) 

The value of g varies in the range from –1 to 1: g = 0 
corresponds to isotropic (Rayleigh) scattering, g = 1 to 
total forward scattering (Mie scattering by large 
particles), and –1 to total backward scattering. The 
assumption of random distribution of the scattering 
particles in a medium (i.e. the absence of a spatial 
correlation of tissue structures) leads to normalization  
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p θ( )2π sinθdθ =1
0

π

∫ . (3.22) 

 

Fig. 3.9 Geometry of the scattering of light by a particle 
located at the origin 0. The polarized incident light 
beam ( !s0 ) is parallel to the z-axis [22]. Two orthogonal 
linear polarization components of the incident light field 
are presented as vectors

!
E||i and

!
E⊥i in parallel and 

perpendicular to the scattering plane, respectively. θ and 
ϕ are the scattering angles in the scattering plane and in 
the plane perpendicular to the scattering plane, 
respectively. A detector is located at distance r from the 
origin along the vector s1 , where two orthogonal 

polarization components
!
E||s  and

!
E⊥s of scattered light 

are coming.  

3.2.3 Rayleigh scattering 

If a particle is small with respect to the wavelength of 
the incident light, its scattering can be described as if it 
is a single dipole, the so called Rayleigh theory is 
applicable under the condition that m(2πa/λ) << 1, 
where m is the relative refractive index of the scatterers, 
(2πa/λ) is the size parameter, a is the radius of the 
particle, and λ is the wavelength of the incident light in 
a medium [6-8, 22, 23]. For this theory, the scattered 
irradiance is inversely proportional to λ4 and increases 
as a6, the angular distribution of the scattered light is 
isotropic. 

The angular dependence of the scattered intensity by 
an ensemble of N randomly distributed particles with 
mean distance between particles bigger than the 
wavelength λ, unpolarized incident light of intensity I0, 
and distant detector position r is described by Rayleigh 
formula [6-8] 

I r,θ( ) = 2π( )4 a
6

λ4r2
m2 −1
m2 + 2

⎛
⎝⎜

⎞
⎠⎟

2

N
1+ cos2 θ

2
I0 , (3.23) 

where m =
ns
n0

 is the relative index of refraction of 

scatterers and ground material, N is the number of 
particles in the scattering volume V, i.e., N = ρpV .  

In general, light is polarized and presented as two 
orthogonal linear polarization components of the 
incident light field in parallel (

!
E||i ) and perpendicular    

(
!
E⊥i ) to the scattering plane (see Fig. 3.9). Within the 

detector plane located at a distance r from the origin 
along the vector !s1 , two orthogonal polarization 

components
!
E||s  and

!
E⊥s  of the scattered light create a 

specific polarization state depending on amplitudes and 
phase shift between components.  

Figure 3.10 illustrates isotropy of Rayleigh 
scattering for unpolarized incident light and polarization 
insensitive detection (curve 3) and polarization ability 
of the scattering particles for the particular direction of 
detection (90° and 270°) where only light polarized 
perpendicular to the scattering plane is scattered 
(compare curves 1 and 2)). An ideal isotropy (circle-
shaped phase function) of the scattering is achieved if 
incident light is linear polarized perpendicular to the 
scattering plane (curve 1). 

	
Fig. 3.10 Rayleigh scattering: light distribution in the 
scattering plane for two orthogonal linear polarization 
states and unpolarized incident light. 1 – Electric vector 
perpendicular to the scattering plane; 2 –  electric vector 
parallel to the scattering plane; 3 – unpolarized light 

For the NIR light and typical biological scatterers 
with m = 1.05–1.10, the maximum particle radius is 
about 12–14 nm for the Rayleigh theory to remain valid.  

The Rayleigh–Gans or Rayleigh–Debye theory 
addresses the problem of calculating the scattering by a 
special class of arbitrary shaped particles, it requires

m −1 <<1  and 2π ′a
λ

m −1 <<1 , where a′ is the largest 

dimension of the particle [22-24]. These conditions 
mean that the electric field inside the particle must be 
close to that of the incident field and the particle can be 
viewed as a collection of independent dipoles that are 
all exposed to the same incident field. A biological cell 
might be modeled as a sphere of cytoplasm with a 
higher refractive index (nc = 1.370) relative to that of 
the surrounding interstitial medium (ni = 1.350), then m 
= 1.015 and for the NIR light this theory will be valid 
for the particle dimension up to a′ = 850–950 nm. This 
approximation has been applied extensively to 
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calculations of light scattering from suspensions of 
bacteria [24]. It can be applicable for describing of light 
scattering from cell components (mitochondria, 
lysosomes, peroxisomes, etc) in tissues due to their 
small dimensions and refraction. 

3.2.4 Mie scattering 

Mie or Lorenz-Mie scattering theory relates to 
scattering by comparatively large spherical particles, 
which are of the order of the wavelength, and based on 
an exact solution of Maxwell’s electromagnetic field 
equations for a homogeneous sphere [2-25]. Typically 
tissues contain both types of scatterers small and large 
(for instance, cell components and collagen fibers of 
connective tissues, see Fig.3.7). Mie theory operates 
with the following relevant particle parameters: radius a 
and complex refractive indices of its material ns(λ0) and 
dielectric host (ground material) n0(λ0) 

ns,0 λ0( ) = ′ns,0 λ0( )+ i ′′ns,0 λ0( ) , (3.24) 

where λ0 is the wavelength in a vacuum. The imaginary 
part of the complex refractive index of material is 
responsible for light losses due to absorption. Mie 

theory yields the scattering (Qsca =
σsca
πa2

) and absorption 

(Qabs =
σabs
πa2

) efficiencies and the phase function from 

which the absorption and scattering cross sections (σsca 
and σabs) and the scattering anisotropy factor g are 
calculated: 

σsca
Mie =

λ0
2

2πn0
2 2n +1( ) an 2 + bn 2( )
n=1

∞

∑ , (3.25) 

σabs
Mie =

=
λ0
2

2πn0
2 2n +1( ) Re an + bn( )− an

2
+ bn

2( )⎡
⎣⎢

⎤
⎦⎥n=1

∞

∑
 (3.26) 

pMie θ( ) = λ0
2

2πn0
2σsca

Mie S1
2
+ S2

2( ) , (3.27) 

where an and bn are Mie coefficients, which are 
functions of the relative complex refractive index of 

particles (m) and parameter α =
2πan0
λ0

; an asterisk 

indicates that the complex conjugate is to be taken; 

an =
ψn α( )ψ'n mα( )−mψn mα( )ψ'n α( )
ζ α( )ψ'n mα( )−mψn mα( )ζ'n α( ) ,

bn =
mψ' mα( )ψn α( )− ψn mα( )ψ'n α( )
mψ'n mα( )ζn α( )− ψn mα( )ζ'n α( ) ,

 (3.28) 

ψn and ζn are the Riccati–Bessel functions; S1 and S2 are 
functions of the polar scattering angle and can be 
obtained from the Mie theory as 

S1 θ( ) = 2n +1
n n +1( ) anπn cosθ( )+ bnτn cosθ( ){ }

n=1

∞

∑ ,

S2 θ( ) = 2n +1
n n +1( ) bnπn cosθ( )+ anτn cosθ( ){ }

n=1

∞

∑ ,
 (3.29) 

the parameters πn and τn represent 

πn cosθ( ) = 1
sinθ

Pn
1 cosθ( ) ,

τn cosθ( ) = ddθ Pn
1 cosθ( ) ,

 (3.30) 

where Pn
1 cosθ( )  is the associated Legendre 

polynomial; the following recursive relationships are 
used to calculate πn andτn: 

πn =
2n −1
n −1

πn−1 cosθ −
n
n −1

πn−2 ,

τn = nπn cosθ − n +1( )πn−1 ,
 (3.31) 

and the initial values are: 

π1 =1,π2 = cosθ,
τ1 = cosθ,τ2 = 3cos2θ.

⎧
⎨
⎪

⎩⎪
  (3.32) 

Accounting for definition expressed by Eq. (3.21) 
scattering anisotropy factor can be calculated from Eq. 
(3.27) 

gMie =
λ0
2

πn0
2σsca

Mie

2n +1
n n +1( ) Re anbn

∗( )+
n=1

∞

∑

+
n n + 2( )
n +1

Re anan+1
∗ + bnbn+1

∗( )
n=1

∞

∑

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

. (3.33) 

Similarly to the Rayleigh formula (3.23), the angular 
dependence of the scattered light intensity by an 
ensemble of N randomly distributed Mie particles with 
mean distance between particles bigger than the 
wavelength λ, for unpolarized incident light of intensity 
I0 and distant detector position r, is described by  

I θ( ) = pMie θ( ) ⋅N ⋅ I0 . (3.34) 

The introduction of the specific scattering and 
absorption coefficients extrapolated to a volume fraction 
f = 1 is useful for describing scattering and absorption 
properties of an ensemble of Mie scattering particles. In 
that case and when the particles are sufficiently distant 
to prevent dependent scattering, the scattering 
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coefficient is proportional to the dimensionless volume 
fraction of scatterers f. From Eq. (3.17) it follows: 

µ s = ρpσsca = ( f /V )σsca = fσsca , (3.35) 

where the specific scattering coefficient σsca = σsca /V  
is expressed in cm–1,  V is the unit volume. 

	
Fig. 3.11 The polar diagrams of the calculated angular-
dependent intensity distributions (Mie phase functions) 
for 5 single isotropic spheres with the diameter in the 
range of those which are typical for cell organelles, 
from 0.05 to 1.00 µm [25]. 

Mie theory predicts that scattering introduced by 
spherical micrometer-sized particles is strongest if the 
particle radius and wavelength are of the same order of 
magnitude (Figs. 3.11 and 3.12). The scattering 
coefficient increases strongly with the elevation of the 
relative index of refraction. In contrast, for the matched 
refractive indices of scatterers and background material, 
the scattering coefficient goes to zero, which means that 
only absorption is responsible now for the light beam 
extinction [see Eq. (3.18)]. However, because of very 
low absorption of many tissues in the NIR range, 
refractive index matching conditions due to perfusion of 
endogenous or exogenous immersion agents may have a 
significant influence on tissue optical properties. It is 
also of great importance that scattering anisotropy factor 
aspires to 1 (extremely high scattering directness). 

In Fig. 3.12, the wavelength dependencies of 
scattering parameters are also shown. If particle 
diameter 2a and relative index m are fixed, the 
wavelength dependencies are caused by variation of the 
ratio of particle diameter and wavelength only. The 
spectral variation of the relative index m has been 
neglected in these calculations, but may be relevant in 
practice. 

For example, epithelial cell nucleus can be 
considered as a spherical Mie scatter with refractive 
index, nnc, which is higher than that of the surrounding 
cytoplasm, ncp, i.e., m = nnc/ncp. Normal nuclei have a 
characteristic diameter 2a = 4–7 µm. In contrast, 
dysplastic nuclei can be as large as 20 µm, occupying 
almost the entire cell volume. In the visible and NIR 
range, where the wavelength λ << 2a, Mie theory can be 
well approximated by the Van de Hulst approximation 
or also called anomalous diffraction approximation, 

which is applicable for optically soft particles [(m – 1) 
<<1] [26].  Thus, the elastic scattering cross section of 
the cell nuclei can be described as 

σsca λ ,a( ) = 2πa2 1− 2sinδδ
+ 2sinδ

δ
⎛
⎝⎜

⎞
⎠⎟

2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ , (3.36) 

where δ =
4πa m −1( )

λ0
, λ0 is the wavelength of the light 

in free space. The cross section varies periodically with 
inverse wavelength and gives rise to a periodic 
component in the tissue optical reflectance. Since the 
frequency of this variation (in inverse wavelength 
space) is proportional to particle size, the nuclear size 
distribution can be obtained from the Fourier transform 
of the periodic component.  

Mie theory is strictly applicable only to particles of 
particular regular shapes, but results are still useful if 
the shape is irregular. The oscillatory structure of the 
scattering coefficient and anisotropy factor as a function 
of particle size, which is observed with spherical 
particles (see Figs. 3.12a,b), will be averaged out in the 
case of irregular shape.  

Actual biological tissue models are more complex 
than a monodispersive system of distant spherical 
particles or even randomly shaped ones. Sometimes, a 
mixture of large particles contributing high scattering 
anisotropy and small particles with increased scattering 
towards shorter wavelengths may be a good 
approximation to describe tissue scattering properties.  

Besides theoretical Mie phase function [see Eq. 
(3.27)], several semi-empirical approximations for the 
scattering phase function have been used in tissue 
photonics [2-5, 18, 28]. One of the most often exploited 
is the Henyey-Greenstein (HG) phase function 

pHG θ( ) = 1
4π

⋅ 1− g 2

1+ g 2 − 2g cosθ( )3/2
. (3.37) 

The HG phase function has one parameter g that 
may be represented as the infinite series of Legendre 
polynomials Pn

1 cosθ( ) , 

pHG θ( ) = 1
4π

2n +1( ) fn
n=0

∞

∑ Pn
1 cosθ( ) , (3.38) 

where fn=gn is the nth  order moment of the phase 
function. 

Figure 3.13 illustrates behavior of the Henyey-
Greenstein scattering phase function calculated for g 
values characteristic for hard (0.6–0.9) and soft (0.8–
0.95) tissues, as well as for highly anisotropic scattering 
systems such as blood (0.995). 
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a                                                                          b 

 
c                                                                  d 

Fig, 3.12 Mie theory: the scattering properties [normalized reduced scattering coefficient µs′/Cs= (µs/Cs)(1 – g) (a) and 
scattering anisotropy factor g(b)] of an ensemble of noninteracting nonabsorbing spherical particles calculated at 633 
nm for the broad ranges of diameter (2a) and relative index of refraction (m=ns'/n0) which are characteristic to tissue 
and cellular structure components; wavelength-diameter dependences of µs′(λ0, 2a)/Cs (c) and g(λ0, 2a) (d) at relative 
index of refraction m = 1.07, typical for normal soft tissues; Cs is the volume fraction of the particles [5, 27]. 

3.2.5 Multiple scattering 

Parameters introduced are related to light tissue 
interaction on the level of a single scattering that occurs 
when a wave undertakes no more than one collision 
with particles of the medium in which it propagates. For 
example, this is a case for healthy transparent front 
human eye tissues, such as cornea, eye lens and vitreous 
body (see Fig. 2.6) [1], or for a tissue slice which is 
sufficiently thin that single scattering approximation 
accurately estimates the reflection and transmission of 
the slab. In contrast, in many real situations, especially 
in in vivo studies of skin, breast, brain and etc., a 
multiple scattering – a scattering process, in which on 
average each photon undertakes many scattering events, 
is more likely [2-5, 9-38].  

To evaluate what kind of scattering regime is 
realized a so called mean free path length (MFP) may be 
introduced. MFP is the mean distance between two 
successive interactions with scattering or absorption 
which a photon travelling in a scattering-absorption 
medium experiencing,  

MFP = lph =1/µt.  (3.39) 

	
Fig. 3.13 The Henyey-Greenstein (HG) scattering phase 
function often used in tissue photonics; it is calculated 
for typical g values characteristic for hard (0.6-0.9) and 
soft (0.8-0.95) tissues and blood (0.995).  
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Thus, one can differentiate optically thin 
(transparent) or optically thick sample is under 
investigation. “Optical thickness” is the depth of a 
material or medium in which the intensity of light of a 
given wavelength is reduced by a factor of 1/e because 
of absorption and/or scattering [see Eq. (3.18)]. A 
sample of high physical thickness and/or high turbidity 
that correspond to a few “optical thicknesses” is 
optically thick, as well as a sample with a low thickness 
and/or low turbidity that correspond to one or less than 
one “optical thickness” is optically thin. 

The radiation transfer theory (RTT) is the basic 
theory allowing one to calculate light distributions in the 
multiple scattering media with absorption, such as 
tissues. The heart of this theory is the radiation transfer 
equation (RTE) – the Boltzmann or linear transport 
equation, which is a balance equation describing the 
flow of particles (e.g., photons) in a given volume 
element that takes into account their velocity c, location 
r, and changes due to collisions (i.e., scattering and 
absorption). The basic parameter for this theory is the 
reduced scattering coefficient that is incorporating the 
scattering coefficient µs and the scattering anisotropy 
factor g as the following expression   

µ's = µ s 1− g( ) , (3.40) 

or at usage of dimensionless volume fraction of 
scatterers f and the specific scattering coefficients σsca   
[see Eq. (3.35)] as 

µ's = fσsca 1− g λ0 ,2a( )⎡⎣ ⎤⎦ . (3.41) 

The transport mean free path (TMFP) of a photon 
(cm) is defined as  

ltr =
1

µa + µ's
, (3.42) 

where µa + µ's = µ tr is the photon transport coefficient. 
The TMFP in a medium with anisotropic single 
scattering significantly exceeds the MFP, ltr>>lph. The ltr 
is the distance over which the photon loses its initial 
direction.  

In tissues, at visible and NIR light propagation, 
reduced scattering coefficient µs' mostly defines light 
transport, because absorption much lower than 
scattering, µs' >> µa,  

ltr ≅
1
µ's

. (3.43) 

The reduced scattering coefficient µs' describes the 
diffusion of photons in a random walk of step size of 

1
µ 's

 [cm], where each step involves isotropic scattering. 

Schematically scattering processes are presented in Fig. 
3.14 [20].  This is equivalent to description of photon 

movement using many small steps 1
µ s

that each involve 

only a partial (anisotropic) deflection angle if there are 
many scattering events before an absorption event, i.e., 
µs' >> µa (diffusion regime). Parameter µs' is useful in 
the diffusion regime. Figure 3.14 shows the equivalence 

of taking 10 smaller steps of MFP ≅ 1
µ s

with 

anisotropic deflection angles and one big step with a 

TMFP ≅ 1
µ 's

. Diffusion regime is well described 

analytically in the framework of diffusion 
approximation of the radiation transfer equation – 
diffusion theory. 

A power law for dependence of the reduced 
scattering coefficient on the wavelength is typical for 
many tissues, µ 's (λ) = µ 's (λ ref )(λ / λ ref )

−b . In Refs. [18, 

20, 21], λ ref = 500nm . For different tissues and tissue 
conditions (normal or pathological, coagulated or 
dehydrated, etc.) parameter b is ranging from 0.5 to 1.6 
for the visible-NIR light scattering (600–2000 nm).  

a  

b  

Fig. 3.14 Multiple scattering: mean free path (MFP) and 
transport MFP (TMFP) definitions; MFP ≅ 1/µs (µs >> 
µa), TMFP≅ 1/µs′ (µs′ >> µa), and <cosθ> = 0.90, i.e., 
<θ> ≈ θ1 ≈ θ2 ≈…≈θ10 ≈ 26° and µs′ = µs(1 – g) = 0.10µs 
(a); illustration of photon random walk of TMFP-step 
size; scattering particles are shown as yellowish disks, 
small arrows show direction of photon migration 
between consecutive elementary interaction acts with 
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scattering; big arrows show direction of effective 
photon migration as a result of multiple scattering; for 
more anisotropic phase function (bigger g-factor) more 
elementary scattering steps needed to transfer photon 
distribution to isotropic one (b); 
http://omlc.ogi.edu/classroom/ece532/class3/musp.html. 

For example, for tissue model of noninteracting Mie 
scatterers of equal diameter 2a, for typical parameters of 
soft tissues (g > 0.9; 5 < 2πa/λ  < 50; 1 < m < 1.1) the 
reduced scattering coefficient is described by a simple 
expression [34] 

µ's = 3.28πa
2ρp

2πa
λ

⎛
⎝⎜

⎞
⎠⎟

0.37

× m −1( )2.09 . (3.44) 

Attenuation of a wide (expanded) laser beam of 

intensity I0 in a thick tissue at depths z > ld =
1
µeff

, 

where diffusion regime takes place, is described as [5] 

I z( ) ≈ I0bs exp −µeff z( ) , (3.45) 

where µeff = 3µa µ's+ µa( ) , which follows from the 

diffusion theory; bs accounts for additional irradiation of 
the upper layers of a tissue due to backscattering 
(photon redistribution or recycling effect). Respectively, 
the depth of light penetration into a tissue is 

le = ld lnbs +1⎡⎣ ⎤⎦ . (3.46) 

Typically, for soft tissues bs =1–5 for beam diameter of 
1–20 mm. Thus, when wide laser beams are used for 
irradiation highly scattering tissues with low absorption, 
CW light energy is accumulated in tissue due to high 
multiplicity of random long-path photon migrations. A 
highly scattering medium works as an optical cavity 
with random reflectors (scatterers) providing the 
capacity of light energy. The light power density within 
the superficial tissue layers may substantially (up to 
fivefold) exceed the incident power density and cause 
the over dosage during photodynamic therapy or 
overheating at interstitial laser thermotherapy. On the 
other hand, photon recycling effect can be used for more 
effective irradiation of under surface lesions at 
relatively small incident power densities. 

To describe pulsed light propagation, which is often 
used in tissue spectroscopy and imaging, in a tissue the 
time-dependent radiation transfer theory should be used 
[2-5, 35-38]. This theory is based on the time-dependent 
linear transport equation, which is a balance equation 
describing the time-dependent flow of particles (e.g., 
photons) in a given volume element that takes into 
account their velocity c, location r , and changes due to 
collisions (i.e., scattering and absorption). 

The time-resolved methods that use pulsed or 
intensity modulated laser beams for irradiating of 
tissues under study can separate different components of 
scattering photons from a sample in forward 
(transillumination) or backscattering operating modes. 
One of these groups of photons is a so called ballistic 
(coherent) photon group which is consists of unscattered 
and strictly straightforward scattered photons. The other 
group is composed of quasi-ballistic (snake or zigzag) 
photons which are photons that migrate within a 
scattering medium along trajectories that are close but 
not the same as for ballistic photons. To the third group 
the so called diffusion photons belong. This is typically 
the largest group of photons that migrated for longer 
time in a tissue along multi-step random trajectories. 
Each of these groups carries information about optical 
(morphological) properties of a tissue. Ballistic photons 
are good for getting precise tissue images similar to x-
ray computer tomography however in many tissues 
because of strong scattering this group of photon is 
typically negligibly small. The snake photons, having 
undergone only a few scattering events, all of which are 
in the forward or near-forward direction, retain the 
image bearing characteristics to some extent, however 
their amount is rather big in comparison with the 
ballistic photons, thus they are detectable and provide 
good spatial resolution. In contrast, due to high intensity 
of diffusion component there is much more practical to 
use diffusion photons to estimate optical properties of 
tissues however a spatial resolution could not be very 
high.  

Figure 3.15 illustrates short pulse propagation in 
tissues, where an ultrashort laser pulse incident on tissue 
surface spreads in bulk into three main groups of 
photons – first arriving to detector (ballistic), more 
intensive group of snake photons, and a large group of 
diffuse late arriving photons with a broad distribution. 
Figure 3.15b demonstrates how decays the amplitude of 
intensity modulated light at frequency ω=2πν 
propagating through a scattering tissue and how shifts 
its modulation phase, ΔΦ. For a weakly absorbing 

scattering medium, when µa  << ω
c

  and  << µ 's , an 

alternating component of the scattered light is a 
outgoing spherical intensity (or photon density) wave 
with the center at the point r = 0 which oscillates at a 
modulation frequency ω with the modulation depth [5] 

mU r ,ω( ) = mI ⋅exp r µa
D

⎛

⎝
⎜

⎞

⎠
⎟ ⋅exp −r ω

2cD
⎛

⎝
⎜

⎞

⎠
⎟ , (3.47) 

and undergoes a phase shift relative to the phase value 
at point r = 0 equal to  

ΔΦ r ,ω( ) ≅ r ω
2cD

, (3.48) 
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where mI =
δI
I0

 is the modulation depth of the incident 

light with mean intensity I0 and alternating amplitude 
δI;  

D = 1
3 µ s '+ µa( ) ≅

1
3µ s '

  (3.49) 

is the photon diffusion coefficient, c–1. Accounting for 
Eq. (3.49) expressions (3.47) and (3.48) could be further 
simplified 

mU r ,ω( ) =

= mI ⋅exp r 3µaµ s '( ) ⋅exp −r
3ωµ s '
2c

⎛

⎝
⎜

⎞

⎠
⎟

, (3.50) 

ΔΦ r ,ω( ) ≅ r 3ωµ s '
2c

. (3.51) 

a	 	

b 	

c 	

d 	

Fig. 3.15 Short pulse and intensity modulated light 
propagation in tissues: (a) an ultrashort laser pulse 
spreads into three main groups of photons – ballistic 
(first arriving to detector), snake, and diffuse (broad 
distribution of late arriving photons); (b) illustration of 
intensity modulation amplitude decay and phase shift 
due to scattering; (c) illustration of two typical 
geometries for optical imaging of absorbing 
inhomogeneity (tumor) in tissues, A – probing beam 
(typically delivered by a fiber), B – detected radiation 
(typically collected by a detector fiber), left – 
transillumination mode, right – backscattering mode; (d) 
illustration of absorbing inhomogeneity (tumor) image 
contrast enhancement due to time-gating by selecting 
early arriving (snake) photons only, X is the light beam 
scanning axis [35]. 

To generate and support a photon density wave a 
light scattering medium is needed. However, high 
scattering turns a photon density wave to decay with 
distance (see Eq. (3.50)). Measuring mU r ,ω( ) and/or 

ΔΦ r ,ω( )  allows one to determine separately the 

reduced scattering coefficient µs′ and the absorption 
coefficient µa, and evaluate the spatial distributions of 
these parameters needed for imaging of tissue 
pathologies. For biomedical applications, in particular, 
optical mammography or brain imaging, typical 
modulation frequencies are lying in the range ω/2π = 
50–1000 MHz [2-5, 35-38]. 

Two typical geometries (transillumination and 
backscattering) for a time-resolved optical imaging of 
absorbing inhomogeneity (tumor) in tissues are shown 
(see Fig. 3.15c). Figure 3.15d illustrates image contrast 
(spatial resolution) enhancement due to time-gating by 
selecting early arriving (snake) photons at pulse 
excitation. 

		

Fig. 3.16 Schematic representation of spatial filtering 
using an aperture in the detector space and polarization 
gating with a linear polarizer in the light incidence 
space and in-line polarized analyzer in the detector 
space; diffuse photons are not detected due to their high 
deflection angles (spatial filtering) or due to loosing 
initial polarization state because of long travelling paths.  

To improve spatial resolution of diffusion methods 
various approaches for selective detection of 
informative photons were suggested, such as spatially-
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resolved, angular-resolve, and polarization-sensitive 
gating. Spatial filtering and polarization gating 
approaches are shown schematically in Fig. 3.16. It is 
well seen that diffuse photons are not detectable due to 
their high deflection angles (spatial filtering) or due to 
loosing initial polarization state because of long 
travelling paths within tissue. Thus more contrast image 
could be produced by detection pure ballistic and least-
scattering (snake) photons which have minimal 
deflection and alternation of polarization state.  

The most complete information about tissue optical 
properties could be obtained when spectrum of the 
scattered light is measured in the wavelength range of 
interest. This spectrum may be differential, measured or 
calculated for a certain scattering angle, or integrated 
within an angle (field of view) of the measuring 
spectrometer. In general, it includes transmitted and 
backscattered (back reflected) light within a narrow 
field of view, such as measured in geometry of 
collimated transmittance or specular reflectance, or 
totally forward or backward scattered light measured 
using integrating sphere technique. Figure 3.17 
illustrates typical spectral measurement geometries used 
for in vitro and in vivo studies [2-5, 17, 18]. In vitro 
measurements include angular spectral dependences I(θ, 
λ) using goniometric detection with the narrow slit in 
front of a detector, and angular integrated spectra by 
integrating sphere. Angular measurements [I(θ, λ)] are 
used for evaluation of phase scattering function p(θ, λ) 
[see Eqs. (3.27) and (3.37)] for the particular 
wavelength.  Sometimes backward [Ib(θ,λ)] and forward 
[If(θ,λ)) scattering intensities, or collimated transmitted 
[Ic(λ)] and specular (Fresnel)  reflected [IF(λ)] 
intensities are measured to characterize tissue sample 
optical properties. The collimated transmittance and 
specular (Fresnel) reflectance spectra are introduced as 

Tc λ( ) = Ic λ( )
I0 λ( ) , (3.52) 

RF λ( ) = IF λ( )
I0 λ( ) . (3.53) 

The total transmittance [Tt λ( ) ], and diffuse reflectance 

[ Rd λ( ) ] spectra measured with the help of integrating 
spheres are introduced as 

Tt λ( ) = It λ( )
I0 λ( ) = Tc λ( )+Td λ( ) , (3.54) 

It λ( ) = Ic λ( )+ I f θ,λ( )dθ
−π
2

π
2

∫ ; (3.55) 

Rd λ( ) = Ib λ( )
I0 λ( ) , (3.56) 

Ib λ( ) = Ib θ,λ( )dθ
π
2

− π2

∫ . (3.57) 

 
a 

 
b 

 
c 

 
d 
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e 

 
f 

Fig. 3.17 Typical geometries used for in vitro and in 
vivo spectral measurements: in vitro goniometric 
detection with the narrow slit in front of a detector I(θ, 
λ) (phase scattering function p(θ, λ) measurements) and 
fixed angle detection (collimated transmittance Tc(λ) (θ 
= 0) and specular reflectance RF (λ) (θ = 2π)(a); in vitro 
angular integrated detection using an integrating sphere: 
the total transmittance Tt λ( )  (b) and diffuse reflectance

Rd λ( ) (c); in vivo integrating sphere detection (d), 
spatially-resolved fiber (e) or CCD (f); the integrating 
surface of the sphere is coated with non-fluorescing 
material (BaSO4, or MgO, or Spectrolan®), which have 
nearly 100% diffuse remittance over the entire optical 
and NIR spectrum of interest; shut-off screen prevents 
direct irradiation of the detector; the intensity of light 
entered into a sphere is measured as the signal of the 
detector multiplied by the ratio of areas of the entire 
sphere and detector surfaces; the accuracy of such 
measurements evidently depends on this ratio.    

In vivo studies could be done in different ways, but 
the most typical geometries are the spatially-resolved 
backreflectance using two fibers with numerical 
aperture NA – one as a light source [I0(λ)] and another 
as a detector [ Ib

NA λ( ) ] with variable source-detector 
separation rsd (Fig. 3.17d), or using CCD (CMOS) 
camera with objective lens (Fig. 3.17e). Integrating 
sphere measurements of diffuse reflectance are also 
often provided (Fig. 3.17d).   

The modeling of light propagation in a tissue by 
taking into account the experimental geometry, light 
source and detector characteristics, known optical 
properties of a sample, and predicted measurement and 
associated accuracies is often need for planning of 
strategy of light treatment or diagnosis. Such modeling 
and predictions are classified as a solution of the 
forward scattering problem. In contrast, the inverse 
scattering problem solution is the attempt to take a set 
of measurements and error estimates, and only a limited 
set of parameters describing the sample and 
experimental specificity, and to derive the remaining 
parameters. Usually the geometry is known, intensities 
or their parameters are measured, and the optical 
properties or sizes and refractive indices of tissue 
scatterers need to be derived. If these properties are 
considered to be spatially varying, then the resultant 

solutions can be presented as a 2D or 3D function of 
space, i.e., as an image. 

3.3 Scattering of the coherent light – speckles 

3.3.1 Random phase screen concept and speckle 
formation 

When coherent (laser) light is reflected from a rough 
surface or passes through a bulk scattering medium, 
speckle patterns are produced as a result of interference 
of a large number of elementary waves (wavelets) with 
random phases that arise due to light interaction with 
random scatterers [5, 9, 39-61]. Figure 3.18 illustrates 
this for a He-Ne laser beam reflection by a rough 
surface, where complex interference of the scattered 
coherent wavelets appears as an interference pattern 
with the spatially resolved intensity spots. In contrast, at 
laser beam transportation through a bulk tissue (human 
finger) due to multiple scattering beam is transformed to 
diffuse radiation, speckle size became comparable with 
the wavelength and could not be seen by a naked eye. 
This situation is often considered as a total loosing of 
light coherence. However at multiple scattering 
coherent properties of light also could be detected and 
used for tissue functional diagnostics. A single-mode 
fiber having a core diameter comparable with the 
wavelength allows for detection a single or a small 
group of neighboring speckles in the pattern. Speckle 
temporal dynamics gives information about intensity 
fluctuations connected with Brownian motion of 
biological molecules or flow of the blood particles. This 
is the basis for diffusion wave spectroscopy (DWS) or 
diffusion wave imaging (DWI) [5, 52, 53, 61].  

Generally, there are two types of speckles: 
subjective speckles, which are produced in the image 
space of an optical system (including an eye), and 
objective speckles, which are formed in a free space and 
are usually observed on a screen (CCD) placed at a 
certain distance from an object. Since the majority of 
tissues are optically non-uniform, their irradiation with a 
coherent light always gives rise to the appearance of 
speckle patterns, which either distort the results of 
measurements and, therefore, should be eliminated by 
statistical averaging, or provide a new information about 
the structure and the motion of a tissue and its 
constituents [5, 48]. The average size of a speckle in the 
far–field zone is estimated as 

dav ≈
λ
ϕ

, (3.58) 

where λ is the wavelength and ϕ is the angle of 
observation. 

Figure 3.19 schematically illustrates the principles of 
the formation and propagation of speckles, shows 
transmittance and reflectance modes of their observation 
as a spatial (x) or temporal (t) intensity modulation in 
the detector’s plane (CCD). The incident coherent light 
at interaction with a random (scattering) medium is  
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a            b                                              c 

Fig. 3.18 Coherent light interaction with inhomogeneous media: (а) Helium-Neon laser (λ=632.8 nm) beam as it 
travelling in a free space (open air), no interaction, therefore no additional divergence, beam diameter is of ∼ 1 mm; (b) 
the speckle structure (pattern) formed at laser beam reflection from a rough surface – illustrates coherent properties of 
light in the form of complex interference of the scattered coherent wavelets; (c) at laser beam transportation through a 
bulk tissue (human finger) due to multiple scattering it is transformed to diffuse radiation, speckle size became 
comparable with the wavelength and could not be seen by a naked eye. Sometimes it is saying that coherent light has 
lost its coherence. However in many experiments coherent properties of incident light could be seen and used even at 
multiple scattering. For example, at detection with the help of a single-mode fiber a single or small group of 
neighboring speckles can be selected, dynamics of which give information about intensity fluctuations connected with 
Brownian motion of biological molecules or flow of blood particles. This is the basis of diffusion wave spectroscopy 
(DWS). These photos are done by Joel Mobley. 

 
a 

  
b      c 

Fig. 3.19 Formation and propagation of speckles: observation of speckles in transmittance mode (a); observation of 
speckles in reflectance mode (b), and spatial (x, y) or temporal (t) intensity modulation in the detector’s plane (CCD) 
(c).   

firstly phase modulated with the appearance of the 
wavelets (W) due to diffraction phenomenon, this 
modulation is further transformed to intensity 
modulation as light propagates through near-field 
(Fresnel) zone to far-field (Fraunhofer) zone of 
diffraction, where typically speckles are detected. 
Spatial intensity modulation of the scattered light from a 
stationary object is registered as alterations of signals 
detected by the different pixels or group of pixels of a 
CCD. Temporal intensity modulation is registered at 
laser beam scanning upon a stationary tissue rough 
surface or when motion of cells (or other scattering 

particles) exists. These fluctuations are characterized by 
the mean value of the intensity 〈I〉 and the standard 
deviation σI (see Fig. 3.19c). The object itself is 
characterized by the standard deviation σh of the 
altitudes (depths) of inhomogeneities and the correlation 
length Lc of these inhomogeneities (random relief). 

Since many tissues and cells are phase objects, for 
which only refractive index variations are important on 
the background of negligible absorption, the 
propagation of coherent beams in tissues can be 
described on the basis of a random phase screen (RPS) 
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model. The amplitude transmission coefficient of an 
RPS is given by [5, 9, 40-42, 48, 56-59] 

ts x,y( ) = t0 exp −iΦ x,y( ){ } ,  (3.59) 

where t0 is the spatially independent amplitude 
transmission; Φ(x, y) is the random phase shift 
introduced by the RPS at the (x, y) point. Such spatial 
phase fluctuations may be due to variations in the 
refractive index n(x, y) or the RPS thickness h(x, y) from 
point to point. For thin transmitting and reflecting RPSs, 
we have 

Φt x ,y( ) = 2π
λ

⎛
⎝⎜

⎞
⎠⎟
n x,y( ) −1⎡⎣ ⎤⎦h x,y( ) , (3.60) 

Φr x,y( ) = 4πλ ⋅h x,y( ) , (3.61) 

respectively. Phase fluctuations of the scattered field are 
characterized by the standard deviation σφ and the 
correlation length Lφ. Generally, there are two types of 
RPSs: weakly scattering RPSs (σφ

2 <<1) and deep RPSs   

( σφ
2 >>1). 
Ideal conditions for formation of speckles, when 

completely developed speckles arise, can be formulated 
as the following. Coherent light irradiates a diffusive 
surface (or a transparency) characterized by Gaussian 
variations of the optical path Δl(x, y) = Δ[n(x, y)h(x, y)], 
where n(x, y) is the profile of the index of refraction and 
h(x, y) is the profile of height (thickness), with standard 
deviation of the optical path variations, σl>>λ. Both the 
coherence length of light and sizes of the scattering area 
considerably exceed the differences in optical paths due 
to the surface relief, and many scattering centers 
contribute to the resulting speckle pattern. 

Statistical properties of speckles can be divided into 
statistics of the first and second orders. Statistics of the 
first order describes the properties of speckle fields at 
each point. Such a description usually employs the 
intensity probability density distribution function p(I) 
and the contrast     

VI =
σ I

〈I 〉
, (3.62) 

σ I
2 = 〈I 2 〉 − 〈I 〉2 , (3.63) 

where 〈I 〉 and σ I
2  are the mean intensity and the 

variance of the intensity fluctuations, respectively. In 
certain cases, statistical moments of higher orders are 
employed.  

a  

b  

c  

Fig. 3.20 Laser speckle interferometer with the matched 
wave fronts (a): Laser – He-Ne laser (633 nm), Ob – 
objectives, BS – beam splitter, M – reference mirror, 
PD – photodetector, AFG – audio-frequency generator, 
ADC – analog-to-digital converter, PC – personal 
computer; the normalized interferometer signal as a 
function of depth for a test-object – 150 µm plane-
parallel glass plate (n ≅ 1.5) (b); in-depth profiling of 
the metal-glue-stripped human skin epidermal layer (c) 
[5, 59]. 

For ideal conditions, when the complex amplitude of 
scattered light has a Gaussian statistics, the contrast is VI 
= 1 (developed speckles), and the intensity probability 
distribution is represented by a negative exponential 
function: 

p I( ) = 1
〈I 〉
exp − I

〈I 〉
⎧
⎨
⎩

⎫
⎬
⎭

.  (3.64) 

Thus, the most probable intensity value in the 
corresponding speckle pattern is equal to zero, i.e., 
destructive interference occurs with the highest 
probability.  

Partially developed speckle fields are characterized 
by a contrast VI < 1. The contrast may be lower due to a 
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uniform coherent or incoherent background added to the 
speckle field. For the phase objects with the variance of 
the phase fluctuations σφ

2  >>1 and a small number of 
scatterers within a focused laser beam contributing to 
the field at a certain point in the observation plane, the 
contrast of the speckle pattern is greater than unity. The 
statistics of the speckle field in this case is non-
Gaussian and nonuniform (i.e., the statistic parameters 
depend on the observation angle). The specific features 
of the diffraction of focused laser beams from moving 
phase screens underlie speckle methods of structural 
diagnostics and monitoring of motion parameters of 
tissues and flows of blood and lymph. 

Statistics of the second order shows how fast the 
intensity changes from point to point in the speckle 
pattern, i.e., characterizes the size and the distribution of 
speckle sizes in the pattern. Statistics of the second 
order is usually described in terms of the autocorrelation 
function of intensity fluctuations, 

G2 Δξ( ) = 〈I ξ( ) ⋅ I ξ + Δξ( )〉  (3.65) 

and its Fourier transform, representing the power 
spectrum of a random process; ξ ≡ x or t is the spatial or 
temporal variable; Δξ is the change in variable. Angular 
brackets 〈〉  in Eq. (3.65) stand for the averaging over an 
ensemble or the time.  

3.3.2 Speckle interferometry 

Often regular and random interference interact between 
each other when interferometric or holography systems 
are used for study of scattering tissues.  Figure 3.20 
presents a dual-beam (two-mirror) speckle 
interferometer, where focused beams are used and as an 
objective mirror a tissue sample serves [5, 59]. When 
reflected light forming a developed speckle pattern 
retains linear polarization, intensity distribution at the 
output of such interferometer can be written as  

I r,t( ) = Ir r( ) + Is r( ) + 2 Ir r( ) Is r( )⎡⎣ ⎤⎦
1/2

×

× γ 11 Δt( ) cos ΔΦ I r( ) + ΔΨ I r( ) + ΔΦ I r( ){ } ,
 (3.66) 

where Ir (r) and Is (r) are intensity distributions of the 
reference and signal fields, respectively; r is the 
transverse spatial coordinate; γ11(Δt) is the degree of 
temporal coherence of light; ΔΨ I r( ) is the deterministic 
phase difference of the interfering waves; 
ΔΦ I r( ) = Φ Ir r( )−Φ Is r( )⎡⎣ ⎤⎦  is the random phase 

difference; and ΔΦ I t( )  is the time-dependent phase 

difference related to the motion of an object. In 
particular, for the longitudinal sinusoidal oscillations of 
one of the interferometer mirrors (reference mirror M or 

object itself) with the amplitude l0 and angular 
frequencyΩυ   

ΔΦ I t( ) = 4πλ l0 sin Ω υ t( ) . (3.67) 

In the absence of speckle modulation, the 
deterministic phase difference ΔΨ I r( ) governs the 

formation of regular interference fringes as in 
conventional interferometry. The output signal of a 
speckle interferometer is maximal for the phase-
matched interfering fields, when ΔΨ I r( ) = const within 
the aperture of the detector, and for interference of 
focused laser beams, when speckles with maximal sizes 
are generated. For the large aperture of a photodetector, 
when speckles are not resolved, the output signal of the 
interferometer  

β Δz( ) =
sin

π NA( )2 nΔz
λ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

π NA( )2 nΔz
λ0

, (3.68) 

where NA is the numerical aperture of the objective, λ0 
is the wavelength in free space; n is the index of 
refraction of a sample (tissue), Δz is the in-depth 
displacement. It follows that the in-depth spatial 
resolution (β → 0) of the interferometer is

Δzmin =
λ0

n NA( )2
, thus for the objectives with NA close 

to unity, resolution is close to the wavelength. The 
normalized interferometer’s signal as a function of 
depth for a test–object – 150 µm plane–parallel glass 
plate with index of refraction n ≅ 1.5 presented in Fig. 
3.20b demonstrates an increase of spatial in-depth 
resolution at using of objectives with the bigger 
numerical aperture. Two – anterior and posterior – 
interfaces of the plate are well resolved. Similar in depth 
scanning of the in vivo taken glue-stripped human skin 
stratum corneum sample, which is attached to a metal 
plate by a glue layer, also shows rather good spatial 
resolution of the structure of thin tissue layers (Fig. 
3.20c). Important to note, that independent 
measurement of specimen thickness allows one to 
evaluate mean index of refraction of sample material. 
The regularly spatially modulated laser beams are often 
used for surface profiling, laser anemometry of 
biological fluids, and cytometry [56, 59]. Typically 
these methods take advantage of a small spacing of 
interference fringes ΛI,  
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a 

 Initial                 Speckle modulated                 Averaged 

   
V = 1                Early senile cataract          V = 0.25 

   
V = 1            Immature senile cataract        V = 0.23 

   
V = 1              Mature senile cataract          V = 0.15 

b 

Fig. 3.21 Interaction of the spatially-modulated laser beam with cataractous eye lenses: experimental setup with 
external interferometer with the focused beams on the specimen modeled as a random phase screen (RPS) (a); observed 
interferograms (b): without a specimen (initial, the visibility is equal to unity, V = 1) (left column), with a stationary 
specimen (cataractous eye lens for different severity of the disease, from early to mature senile cataract)(middle 
column), and with a movable specimen (averaged) – observation of the average intensity fringes with contrast from V = 
0.25 to 0.15 (right column) [5, 59]. 

Λ I =
λ
2θI

, (3.69) 

which is comparable to the sizes of inhomogeneities of 
the object under study. Here θI is the angle between the 
wave vectors of the interfering fields. If the separation 
between the interference fringes is small, Λ I < dav [the 
average size of speckles in the observation plane, see 
Eq. (3.58)], and the diameter of the beam waist 2w0 >
Lφ  [the correlation length of phase fluctuations, see Eq. 

(3.61)], the regular interference fringes oriented in a 
random manner from speckle to speckle are observed 
within the limits of a single speckle. The contrast of 
fringes depends in this case only on the relation between 
the intensities of the interfering fields and does not 
depend on the statistical properties of an object 
structure, that gives an opportunity to measure regular 
phase shifts in the object in spite of its random nature.   

The use of modulated beams with a large spacing 
between interference fringes, which exceed the sizes of 
inhomogeneities, Λ I > dav, results in the appearance of 
another correlation effects in the scattered field. If the 
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beam diameter 2w0 and the separation between the 
fringes Λ I  are sufficiently large, the fringes modulate 
the speckle field, and the evolution of the contrast of 
average-intensity fringes along the beam propagation 
(along z-axis) is determined by the statistical parameters 
of the object:  

VI z( ) = rc z( )VI , (3.70) 

where VI is the contrast in the initial laser beam and 
rc z( )  is the modulus of the transverse correlation 

coefficient of the complex amplitude of the scattered 
field. Contrast of the interferential fringes is measured 
for the incident light as 

VI =
Imax − Imin
Imax + Imin

, (3.71) 

and for light propagating after the object at interferential 
pattern averaging by transverse scanning, VI z( )  is 
measured using the similar formula for each z position.  

When a spatially modulated light beam is focused 
using a diffraction-limited optical system with an 
aperture D>Λ I , two spatially separated light spots are 
produced in the area of focusing. The optical scheme for 
such system is presented in Fig. 3.21a. Since two 
different areas of an object are irradiated, the interaction 
of these light spots with a scattering medium gives rise 
to two completely nonidentical (noncorrelated) speckle 
fields in the diffraction field. If Λ I  > dav and 2w0 > Lφ , 
no fringes occur in the scattered field (see Fig. 3.21b). 
However, when an object moves (scanned) in the 
transverse direction, a set of average-intensity 
interference fringes arises (see Fig. 3.21b, right 
column). The contrast of this pattern is determined by 
the statistical properties of the specimen structure 
expressed as the standard deviation σφ  and the 

correlation length Lφ  of phase fluctuations of the 
interacting field.  

3.4 Dynamic light scattering 

3.4.1. Quasi-elastic light scattering (QELS) and Doppler 
effect 

Scattering of light by movable particles is called 
dynamic light scattering in contrast to scattering of light 
by none movable or static particles, which is called 
static or elastic scattering as it occurs without energy 
transfer [5, 9, 43-56, 60]. Instead, at scattering by a 
movable particle small but measurable light energy 
change occurs, thus dynamic light scattering is often 
called as a quasi-elastic light scattering (QELS). The 
basic phenomenon for QELS is Doppler effect that 
determines the frequency shift of the scattered light by a 

well-known expression valid for non-relativistic 
velocities (Fig. 3.22) 

ΔνD =  νs − ν0( ) =
= ν0

υ
c
cosθi − cosθs( ) = !ks −

!
k0( )υ 

, (3.72) 

were νs is the frequency of the scattered wave, ν0 is the 
frequency of the incident wave, υ is the velocity of the 
scatterer (particle), с is the light speed, θi is the angle 
between wave vector of the incident light 

!
k0  and 

direction of particle motion
!
υ , and θs is the angle 

between directions of particle motion 
!
υ and detection of 

the scattered radiation
!
ks . 

The Doppler shift is proportional to velocity of the 
light scattering particle. Therefore, measurement of the 
Doppler shift for known geometry of the experiment 
(angles θi and θs) allows one to determine velocity of a 
particle or ensemble of the co-directional particles. This 
is the principle of the Doppler velocimetry. However for 
living systems different velocities and directions are 
more characteristic. Thus, a number of Doppler 
frequencies are measured, i.e., Doppler spectrum, which 
in principle allows one to reconstruct particle velocity 
and direction distributions. Such measurement is 
recognized as Doppler spectroscopy or QELS 
spectroscopy, or photon-correlation spectroscopy. The 
last term underlines a fundamental relationship between 
spectrum and autocorrelation function of intensity 
fluctuations caused by Doppler signals from many 
scatterers.    

The Doppler shift induced by blood flow and any 
other flows in the body is too small to be detected 
directly by a spectrometer. For example, for typical 
blood flow velocity of 1 cm/s, the Doppler shift is less 
than 10 kHz. However, application of lasers and optical 
mixing (heterodyning or self-beating) technique using a 
photodetector give a possibility to provide easily such 
measurements. The current of a photodetector is 
proportional to light intensity. Thus, with allowance for 
self-beating of the electric components of the scattered 
field, the temporal intensity autocorrelation function 
(AF) G2 (τ )  can be measured. For the Gaussian 
random optical fields, when the scattering field phase 
and amplitude variations are statistically independent of 
each other,G2 (τ ) is related to the first-order AF by the 
Siegert formula: 

g2 τ( ) = G2 τ( )
〈I 〉2

= A 1+ βsb g1 τ( ) 2{ } . (3.73) 

Here, G2 τ( ) is defined by Eq. (3.65); 〈I 〉  is the 
ensemble-averaged intensity; τ is the delay time; A = 
〈i2〉 is the mean of the square of the photocurrent, or the 
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base line of the AF; βsb  is the parameter of self-beating 

efficiency, typicallyβsb ≈ 1; and 

g1 τ( ) = 〈E t( )E* t + τ( )〉
〈 E τ( ) 2 〉

 (3.74) 

is the normalized temporal AF of the optical field, E(t)  

is the electrical field for the time t and E * t + τ( ) is the 

complex conjugate of electrical field for (t + τ). 

	

Fig. 3.22 Laser light scattering by a moving particle: θi 
is the angle between wave vector of the incident light !
k0  and direction of particle motion 

!
υ , θs is the angle 

between directions of particle motion 
!
υ and detection of 

the scattered radiation 
!
ks [55]. 

For a monodisperse system of Brownian particles   

g1 τ( ) = exp −ΓT τ( ) , (3.75)  

where 

ΓT = q
2DT  (3.76) 

 is the relaxation parameter,  

q =
!
ks −
!
k0 = 4π

λ
sin θ
2

 (3.77) 

is the module of the scattering wave vector, θ = θs − θi  
(Fig. 3.22); 
and  

DT =
kBT
6πηmrh

 (3.78) 

is the coefficient of translation diffusion, kB  is the 
Boltzmann constant, T is the absolute temperature, ηm is 
the absolute viscosity of the medium, and rh is the 
hydrodynamic radius of a particle. 

One of the aims of QELS spectroscopy is the 
reconstruction of size distribution of scattering particles 
(biological molecules, cell organelles, cells, etc.) which 
is the valuable information for early diagnostics and 

noninvasive monitoring of some diseases. However, 
QELS algorithms work well only for a single scattering 
regime. 

3.4.2. Dynamic speckles 

When random moving (dynamic) object is irradiated by 
a coherent light a dynamic speckle-pattern is formed [5, 
9, 43-56, 60, 61]. This means that phase and intensity of 
scattered light have a pure stochastic nature. Laser 
speckle-correlation technique is based on the space-time 
correlation properties of dynamic speckle field. It allows 
one to measure the scattering object velocity. 

If the scatterers are in random motion, e.g., in 
Brownian motion, optical speckles obey to the Gaussian 
statistics and the spatial-temporal correlation function of 
the complex amplitude of the scattered light can be 
factorized and presented as a product of spatial and 
temporal correlation functions. On the other hand, tissue 
is more appropriate to be modeled as a moving deep 
random phase screen (RPS) for which the spatial and 
temporal intensity fluctuations are not statistically 
independent from each other, thus a spatial-temporal 
correlation function is introduced to describe dynamic 
speckles.           

For a diffuse object moving in-plane with velocity !
υ  (Fig. 3.23) and contained a large number of 
randomly distributed scattering centers within 
irradiating laser beam with assuming that phase 
fluctuations of the scattered field obey to the Gaussian 
statistics and the phase variation is large σφ

2 >>1, the 
normalized spatial-temporal correlation function of 
stationary process may be written as 

g2
!r ,τ( ) = I1I2

I1 I2
=1+ g1

!r ,τ( ) 2 , (3.79) 

where   

g1
!r ,τ( ) = E1E2

*

E1E1
* E2E2

*
 (3.80) 

is the spatial-temporal correlation function of the 
complex amplitude of the scattered field; 

!r =
!
X 1 −

!
X 2 , 

τ = t1 − t2 .      
For the specific case of Gaussian laser beam 

illumination [see Eq. (1.5)] [1] with the beam axis 
normal to the object plane and beam waist apart at a 
distance z from the object plane (see Fig. 3.23), the 
beam spot radius wb and radius of wavefront curvature 
ρb in the object plane are determined by the following 
expressions [55]:  
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wb = w0 1+
z
ab

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

,ρb = z 1−
ab
z

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (3.81) 

where ab = πw0
2 / λ , and the normalized spatial-

temporal correlation function of intensity of scattered 
light in observation plane, which is apart at the distance 
l from the object plane, is denoted as 

 
g2
!
r ,τ( )−1=

= exp −
!
υ
2

wb
2 τ

2
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
exp − 1

rs
2

!
r − 1+ l

ρb

⎛

⎝⎜
⎞

⎠⎟
!
υτ

2⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

, (3.82) 

where,  

rs =
2l
k0wb

 (3.83) 

is the mean speckle size in the observation plane. As 
can be seen from Eq. (3.82), speckles translate in the 
observation plane with velocity differ from the velocity 
of the object (RPS) 

!
υ  

!
υs =

!r
τ
= 1+ l

ρb

⎛

⎝⎜
⎞

⎠⎟
!
υ . (3.84) 

 

Fig. 3.23 Scattering of the Gaussian laser beam by a 
random phase screen moving with a velocity 

!
υ in 

perpendicular direction to the beam axis [55].  

The motion of dynamic speckles may arise in two 
different modes, namely, speckles moving without 
changing the structure, called "speckle translation" and 
the speckle changing only the structure in time without 
translation, called "speckle boiling". The “speckle 
boiling” mode is characteristic for the random 
distribution of particle velocities. For the regular 
velocity of the RPS, speckles also move in a regular 
manner, thus "speckle translation" mode is realized. For 
flows of liquids, the combination of these two modes is 
typical. 

In pure translational mode the time, which is 
required to change the realization of scatterers under the 
illuminating beam, is equal to  

τT =
wb
|
!
υ |

. (3.85) 

Taking into account Eq. (3.84) the translation distance 
can be estimated as:   

rT = 1+ l
ρb

⎛

⎝⎜
⎞

⎠⎟
wb . (3.86) 

The described dependence of speckle dynamics on 
velocity of the object is the basis of the speckle-
correlation technique of velocity measurement. The 
main idea of this technique is to measure speckle 
translation velocity in the observation plane and then 
recalculate the object velocity using Eq. (3.84). One of 
the simplest way to measure the velocity of speckle 
translation is to record the intensity fluctuation at two 
spatially separated points in the observation plane. If 
distance between observation points is less than rT  two 
similar records delayed by the timeτd will be obtained. 
Value τd exactly corresponds to the time, which is 
required for speckle motion from one point to another. It 
could be easily measured using cross-correlation 
technique.   

3.4.3 Speckle pattern blurring effect – full-field velocity 
measurements 

The spatial distribution of contrast of a dynamic speckle 
pattern at its time-integration can be employed as a 
detecting parameter to provide a full-field velocity 
measuring technique [5, 46-55]. If the integration time 
is comparable with the period of the intensity 
fluctuations caused by dynamic light scattering, the 
effect of coherent light interaction with a RPS will be a 
blurring of the recorded speckle pattern – a reduction in 
the speckle contrast. It is clear that a very short 
exposure time would “freeze” the speckle and result in a 
high-contrast speckle pattern, whereas a long exposure 
time would allow the speckles to average out, leading to 
a low contrast. 

The use of such time-integrated speckle led in the 
early 1980s to a technique for blood flow imaging that 
simultaneously achieves full-field operation and robust 
data collection and processing. Originally called 
“single-exposure speckle photography”, it has been 
developed into a fully-digital, real-time technique for 
the mapping of capillary blood flow of skin and other 
tissues and called “laser speckle contrast analysis” 
(LASCA).  

LASCA uses only a laser with diverging optics, a 
CCD camera, a frame-grabber and a PC. Specially 
developed software computes the local contrast and 
converts it to a false-color map of contrast (and hence of 
velocity). The contrast is quantified by the ratio of the 
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standard variation of the intensity fluctuations to the 

mean intensity, 
σ I
I

 [see Eq. (3.62)]. The image is a 

time-integrated exposure, but for capillary blood flow 
the exposure is short enough to render the technique 
effectively real-time. Figure 3.24 illustrates the 
simplicity of the LASCA basic setup. Light from the 
laser is diverged by simple optics to illuminate the area 
under investigation. The CCD camera images the 
illuminated area, the frame-grabber captures an image 
and the software immediately processes it to produce a 
false-color contrast map indicating velocity variations 
which is displayed by PC monitor. This is typically 
accomplished in less than one second, making the 
technique effectively real-time. The number of pixels 
over which the speckle contrast is computed is of great 
importance because for a few pixels used the statistics 
will be questionable, and for too many – the spatial 
resolution will be lost. In practice, a square of 7×7 or 
5×5 pixels is usually a satisfactory compromise.  

	

Fig. 3.24 Full-field imaging of dynamic speckles [60]. 

By making certain assumptions, the following 
mathematical relationship between the speckle contrast 
and the temporal statistics of the fluctuating speckles 
can be found: 

σ I
2 T( ) = 1T !G2 τ( )dτ

0

T

∫  (3.87) 

where σ I
2 is the spatial variance of the intensity in the 

speckle pattern; T is the integration time and !G2 τ( )  is 
the autocovariance of the temporal intensity fluctuations 
of a single speckle; !G2 τ( ) is defined as [see Eq. (3.65)]  

!G2 Δξ( ) = I ξ( )− I⎡⎣ ⎤⎦ ⋅ I ξ + Δξ( )− I⎡
⎣

⎤
⎦ . (3.88) 

This fundamental equation defines the relationship 
between LASCA and those techniques that measure the 
intensity fluctuations directly. LASCA measures the 
quantity on the left side of Eq. (3.87); photon 
correlation spectroscopy, laser Doppler, and time-
varying speckle techniques measure the quantity on the 
right side. In addition, LASCA uses image speckles, 

whereas most of the temporal techniques use far-field 
speckles. However, this does not detract from the 
fundamental equivalence of the two approaches 
expressed in Eq. (3.87). 

All the techniques allow for the determination of the 
correlation time of intensity fluctuations τc. The photon 
correlation technique measures this parameter directly. 
In the case of LASCA, some further assumptions must 
be made in order to link the measurement of speckle 
contrast with τc. For example, for the case of a 
Lorentzian velocity distribution, this relation has a view: 

σ I
〈I 〉

=
τc
2T

1− exp − 2T
τc

⎛

⎝⎜
⎞

⎠⎟
⎧
⎨
⎪
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⎫
⎬
⎪

⎭⎪

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1/2

. (3.89) 

LASCA, as all the temporal measurement 
techniques, suffers on the problem of relating the 
correlation time τc to the velocity distribution of the 
scatterers. The relation depends on the multiple 
scattering, the size and the shape of the scattering 
particles, non–Newtonian flow, non-Gaussian statistics 
resulting from a low number of scatterers in the 
measuring volume, spin of the scatterers, etc. Because 
of the uncertainties caused by these factors, it is 
common in all these techniques to rely mainly on 
calibration rather than on absolute measurements.   

3.4.4 Diffusion wave spectroscopy 

A fundamental difference of diffusion wave 
spectroscopy (DWS) compared to the QELS 
spectroscopy is that this approach is applicable in the 
case of dense media with multiple scattering, which is 
very important for tissues [5, 52, 53, 61]. It is assumed 
thereby that due to multiple scattering the each photon 
that has reached given observation point of the detector 
experiences a great number of scattering events N (Fig. 
3.25). The successive scattering acts taking place at the 
time instant t at the scattering particles located in points 
!r1 t( ) ,!r2 t( ) ,...!ri t( ) ...!rN t( ) of the medium with wave 

vectors 
!
k1 ,
!
k2 ,...
!
ki ...
!
kN , result in formation of the field 

!
E t( ) , whose total phase change Δφ t( ) is determined as: 

Δφ t( ) = !
ki t( ) !ri+1 t( )− !ri t( )⎡⎣ ⎤⎦

i=0

N

∑ . (3.90) 

Δφ t( ) is dependent on the total path length L of each 

photon migrated from the source !r0  to the detector !rN+1  
points (Fig. 3.25): 

L = !ri+1 t( )− !ri t( )
i=0

N

∑ =
!
ki!
ki

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
!ri+1 t( )− !ri t( )⎡⎣ ⎤⎦

i=0

N

∑ . (3.91) 
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The total mean photon path length L is related to the 
number of scattering acts N by the relation L = Nls, 
where ls = (µs)−1.  

		

Fig. 3.25 Schematic diagram of the coherent radiation 
propagation through a randomly inhomogeneous semi-
infinite medium with a multiple scattering; light passes 
from the radiation source (S) towards the detector (D); 
the location of scattering particles at the time instant τ  is 
indicated by (o) and at the time instant (t + τ) – by (•); 1, 
2, …, i, …, N are the first-, second-, i-th-, and N-th-step 
of scattering; θ is the scattering angle. 

In contrast to the case of single scattering, the 
autocorrelation function (AF) of the field g1(τ) [see Eq. 
(3.74)] is sensitive to the motion of a particle on the 

length scale on the order of λ ltr / L , which is 

generally much less than λ, because L >> ltr [see Eqs. 
(3.42) and (3.43)]. Thus, DWS AFs decay much faster 
than AFs employed in QELS. 

Experimental implementation of DWS is very 
simple. A measuring system should provide irradiation 
of an object under study by a CW laser beam and 
measurement of intensity fluctuations of the scattered 
radiation within a single speckle with the use of a 
single-mode receiving fiber, photomultiplier, photon-
counting system, and a fast digital correlator working in 
a nanosecond range. The possibilities of the DWS 
technique for medical applications have been 
demonstrated for the blood flow monitoring in the 
human forearm and brain. The AF slope is the indicative 
parameter for determination of the blood flow velocity. 
The normalized AF of field fluctuations can be 
represented in terms of two components related to the 
Brownian and directed motion of scatterers 
(erythrocytes): 

g1 τ( ) ≈ exp −2 τ
τB

+ τ
τS

⎛

⎝⎜
⎞

⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
L
ltr

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (3.92) 

where τ B
−1 ≡ Γ T= q

2DT  [see Eq. (3.76)], 

τ S
−1 ≅ 0.18GV qltr  characterizes the directed flow, and 

GV is the gradient of the flow rate. It allows one to 
express the slope of the AF in terms of the diffusion 
coefficient DT (characterizes blood microcirculation) 
and the gradient of the directed velocity of blood GV. 

When spatially-resolved single speckle detection is 
provided, the technique is transformed to diffusion wave 
imaging (DWI) mode. 

3.5 Interaction of the polarized light with 
tissues 

3.5.1 Definitions 

Light of arbitrary polarization can be represented by 
four numbers known as the Stokes parameters, I, Q, U, 
and V: I – refers to the intensity of the light; the 
parameters Q, U, and V represent the extent of 
horizontal liner, 45º linear, and circular polarization, 
respectively [5, 9, 56, 62-71]. In terms of the electric 
field components the Stokes parameters are given by 

I = E||E||
∗ + E⊥E⊥

∗ ,

Q = E||E||
∗ − E⊥E⊥

∗ ,

U = E||E⊥
∗ + E⊥E||

∗ ,

V = i E||E⊥
∗ − E⊥E||

∗( ) ,
 (3.93) 

and the irradiance or intensity of light by 

I 2 ≥Q2 +U 2 +V 2 . (3.94) 

For an elementary monochromatic plane or spherical 
electromagnetic wave, Eq. (3.94) is the equality. For a 
partially polarized quasi-monochromatic light which 
can be presented as a mixture of elementary waves, the 
Stokes parameters are sums of the respective Stokes 
parameters of these elementary waves, because of 
fundamental property of additivity. In this case Eq. 
(3.94) is the inequality. 

The Stokes vector 
!
S  of a light beam is constructed 

basing on six flux measurements obtained with different 
polarization analyzers in front of the detector: 

!
S =

I
Q
U
V

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

IH + IV
IH − IV
I+45° − I−45°
IR − IL

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

, (3.95) 

where IH, IV, I+45°, I–45°, IR, and IL are the light intensities 
measured with a horizontal linear polarizer, a vertical 
linear polarizer, a +45° linear polarizer, a −45° linear 
polarizer, a right circular analyzer, and a left circular 
analyzer in front of the detector, respectively. Because 
of the relationship IH + IV = I+45° + I–45° = IR + IL = I, 
where I is the intensity of the light beam measured 
without any analyzer in front of the detector, a Stokes 
vector can be determined by four independent 
measurements. 

Ei(t) Ei(t+τ)

N1

2

θ

i

S D
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The degree of linear (L) and circular (C) polarization 
of the scattered light is defined as 

PL =
I|| − I⊥
I|| + I⊥

=
Qs
2 +Us

2

Is
, (3.96) 

and  

PC =
Vs
2

Is
. (3.97) 

The polarization state of the scattered light in the far 
zone is described by the Stokes vector connected with 
the Stokes vector of the incident light 

!
Ss =M ×

!
Si , (3.98) 

where M  is the normalized 4×4 scattering matrix 
(intensity or Mueller matrix)  

M =

M11 M12 M13 M14

M 21 M 22 M 23 M 24

M 31 M 32 M 33 M 34

M 41 M 42 M 43 M 44

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

, (3.99) 

and 
!
Si  is the Stokes vector of the incident light.  

The light scattering matrix (LSM) elements depend 
on the scattering angle θ, the wavelength, and 
geometrical and optical parameters of the scatterers. 
There are only seven independent elements (of sixteen) 
for the scattering matrix of a single particle with fixed 
orientation and nine relations, which connect the others 
together. For scattering by a collection of randomly 
oriented scatterers, there are 10 independent parameters. 

The element M11 is what is measured when the 
incident light is unpolarized. The angular dependence of 
M11(θ) is the phase function of the scattered light for the 
single scattering mode [see Eqs. (3.27), (3.37), and 
(3.38)]. The M11 is much less sensitive to chirality and 
long-range structure than some of the other matrix 
elements. The M12 element refers to a degree of linear 
polarization of the scattered light. A good measure of 
scatterer nonsphericity is the M22 element which 
displays the ratio of depolarized light to the total 
scattered light. The unique characteristic for different 
biological systems is the M34 element which displays the 
transformation of 45º obliquely linear polarized incident 
light to circularly polarized scattered light, because 
many tissues or tissues constitutes are birefringent and 
work as a phase plate (retarder). The difference between 
the M33 and M44 elements is also a good measure of 
scatterer nonsphericity. 

In addition to definitions of degree of polarization 
[Eqs. (3.96) and (3.97)], the diattenuation (linear 
dichroism) is introduced as  

DA =
P1
2 − P2

2

P1
2 + P2

2 =
M12

2 +M13
2 +M14

2

M11

, (3.100) 

where P1 and P2 are the coefficients characterizing the 
amplitude transmission for the two orthogonal linear 
polarization states. 

To describe polarization-sensitive interaction of light 
with tissues, different optical models are applicable. For 
the small particle systems, scattering can be described 
using Rayleigh theory (see subsection 3.2.3, Eq. (3.23) 
and Fig. 3.10). For a special class of arbitrary shaped 

particle systems, where m −1 <<1  and 2π ′a
λ

m −1 <<1 , 

a′ is the largest dimension of the particle, the Rayleigh-
Gans or Rayleigh-Debye theory can be used for 
calculating the scattering properties. For tissues in the 
NIR a′ could be up to 850–950 nm. For describing of 
near the forward direction scattering caused by large 
particles (of order of 10 µm) the Fraunhofer diffraction 
approximation is useful. According to this theory, the 
scattered light has the same polarization as that of the 
incident light and the scatter pattern is independent of 
the refractive index of the object. For the small 
scattering angles, Fraunhofer diffraction approximation 
can represent accurately the change in irradiance as a 
function of particle size. That is why this approach is 
applicable in the laser flow cytometry. The structure of 
the biological cell such as cell membrane, nuclear 
texture, and granules in the cytoplasm can be 
represented by variations in optical density.  

Mie or Lorenz–Mie scattering theory is an exact 
solution of Maxwell’s electromagnetic field equations 
for a homogeneous sphere (see subsection 3.2.4). In the 
general case, light scattered by a particle becomes 
elliptically polarized. For spherically symmetric 
particles of an optically inactive material the Mueller 
scattering matrix is given by  

M θ( ) =

=

M11 θ( ) M12 θ( ) 0 0

M12 θ( ) M 22 θ( ) 0 0

0 0 M 33 θ( ) M 34 θ( )
0 0 −M 34 θ( ) M 44 θ( )

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

. (3.101) 

Mie theory has been extended to arbitrary coated 
spheres and to arbitrary cylinders. In the Mie theory the 
electromagnetic fields of the incident, internal and 
scattered waves are each expanded in a series. A linear 
transformation can be made between the fields in each
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Fig. 3.26 Experimental radial distribution function g(r) for rabbit cornea (1) and human sclera (2);  g(r) is proportional 
to the probability of particle displacement r at a certain distance from an arbitrarily fixed particle (see collagen cylinder 
faces for rabbit cornea of diameter ∼28 nm and for human sclera of diameter ∼100 nm for r = 0; the nearest the most 
probable particle position r ≈ 50 nm for rabbit cornea and r ≈ 285 nm for human sclera) [5]. 

of the regions. This approach can also be used for 
nonspherical objects such as spheroids. The linear 
transformation is called the transition matrix (T-matrix). 
T-matrix for spherical particles is diagonal.    

3.5.2 Single scattering and quasi-ordered tissues  

Many tissues are featured as densely packed disperse 
systems. Evidently, the interaction of the polarized light 
with such particle systems may have a number of 
important peculiarities caused by a specificity of 
constructive and destructive interference of the scattered 
waves. For example, eye tissues, such as cornea and 
lens, in spite of particle structure and refractive index 
mismatch which causes light scattering by an individual 
particle, are highly transparent tissues the origin of 
which is based on their ordered structure (see 
subsections 2.2 and 2.4, Fig. 2.7) [1]. Light scattering in 
such systems can be analyzed using the radial 
distribution function g(r), which statistically describes 
the spatial arrangement of particles in the system (Fig. 
3.26) [5]. For a fibrillar particle system the function g(r) 
is the ratio of the local number density of the fibril 
centers at a distance r from a reference fibril at r = 0 to 
the bulk number density of fibril centers. It expresses 
the relative probability of finding two fibril centers 
separated by a distance r; thus, g(r) must vanish for 
values of r ≤ 2a (a is the radius of a fibril, because 
fibrils cannot approach each other closer than touching). 
The radial distribution function of scattering centers g(r) 
for a certain tissue may be calculated on the basis of 
tissue electron micrographs (see Figs. 2.7 [1] and 3.26). 

Figure 3.26 depicts a typical result for one of the 
rabbit cornea regions. The function g(r) = 0 for r ≤ 25 
nm, which is consistent with a fibril radius of 14±2 nm, 
can be calculated from the electron micrograph similar 
to that shown for the human cornea in Fig. 2.7b [1]. The 
first peak in the distribution gives the most probable 
separation distance, which is approximately 50 nm. The 
value of g(r) is essentially unity for r ≥ 170 nm, 
indicating that the fibril positions are correlated over no 
more than a few of their nearest neighbors. Therefore, a 
short-range order exists in the system. 

Similar calculations for several regions of the human 
eye sclera are also shown in Fig. 3.26. Electron 
micrographs, such as presented in Fig. 2.7d [1], were 
processed by averaging for 100 fibril centers. The 
obtained results present evidence of the presence of a 
short-range order in the sclera, although the degree of 
order is less pronounced than in the cornea. The 
function g(r) = 0 for r ≤ 100 nm, which is consistent 
with the mean fibril diameter of ≈100 nm derived from 
the electron micrograph. The first peak in the 
distribution gives the most probable separation distance, 
which is approximately 285 nm. The value of g(r) is 
essentially unity for r ≥ 750 nm, indicating a short-range 
order in the system.  

For an isotropic system of N identical interacting 
long cylinders the scattered intensity in a single 
scattering approximation is defined as [5, 9]  

I = E0
2
NS2 θ( ) , (3.102) 

where E0 is the scattering amplitude of an isolated 
(noninteracting) particle,    

S2 θ( ) =
= 1+8πa2ρc g r( )−1⎡⎣ ⎤⎦

0

R

∫ J0
2πa
λ
r sin θ

2
⎛
⎝⎜

⎞
⎠⎟
dr

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

(3.103) 

is the structure factor; a  is the radius of a cylinder face; 
ρc is the mean density of cylinder faces; J0  is the zero 
order Bessel function; R is the distance for that g(r) →1; 
θ  is the scattering angle. For an isotropic system of 
identical spherical particles in a single scattering 
approximation

 

I = E0
2
NS3 θ( ) , (3.104) 
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a    b 

	
c    d 

Fig. 3.27 The calculated angular dependences of the scattered intensity for systems of small spherical particles (a = 20 
nm) [(a) and (b)] with volume fraction, f = 0.1, and large spherical particles (a = 500 nm) [(c) and (d)] with volume 
fraction, f = 0.4; the incident wave is linearly polarized parallel [(a) and (c)] with or  perpendicular [(b) and (d)] to the 
scattering plane (see Fig. 3.9); dotted line – independent particles; wavelength, 633 nm; relative refraction index, 
m=1.105 (calculated by I.L. Maksimova) [5]. 

 

S3 θ( ) = 1+ 4πρ3 r
2

0

R

∫ g r( )−1⎡⎣ ⎤⎦
sinqr
qr

dr
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
, (3.105) 

where q = 4π
λ
sin θ
2

, ρ3 is the mean density of particles, 

and R is the distance for which g(r)→1. Quantity S3(θ) 
is the 3D structure factor. This factor describes the 
alteration of the angular dependence of the scattered 
intensity that appears with a higher particle 
concentration. 

This model can be used to describe polarized light 
interaction with anisotropic media showing a single 
scattering. Many tissues composed from optically soft 
particles (refractive index mismatch of scatterers and 
surrounding medium is small) and thin enough, such as 
cornea, eye lens, mucosa, epithelial layers, can be 
approximated as single scattering systems. The 
interference between elementary scattered fields, which 
is accounted for by structure functions S2(θ) and S3(θ),  
transforms scattering angular dependences of Mueller 
matrix elements and corresponding optical properties. 

Figure 3.27 illustrates the angular dependences of 
the scattered intensity for systems of small spherical 
particles (a = 20 nm) with volume fraction, f = 0.1, and 
large spherical particles (a = 500 nm) with volume 
fraction, f = 0.4. The incident wave is linearly polarized 

parallel with or perpendicular to the scattering plane 
(see Fig. 3.9). The dotted lines show angular light 
distributions for the independent (randomly distributed) 
particles and solid lines – for the ordered particles, for 
which interference of the scattered fields play a 
significant role. The overall scattering is suppressed, for 
the small particle system such suppression is quite 
isotropic for both polarization states, and for the large 
particle system the forward directed scattering is mostly 
suppressed also for both polarization states. As a result 
both particle systems became more transparent for the 
incident light. Important to note that for big particle 
system results for the scattered intensity are presented in 
the logarithmic scale.    

3.5.3 Multiple scattering 

Polarized light interactions at light propagation through 
multiply scattering tissues are fully described by the 
vector radiative transfer equation (VRTE). For 
macroscopically isotropic and symmetric plane-parallel 
scattering media, VRTE can be substantially simplified 
as follows [5, 29]: 

d
!
S
!
r ,ϑ,ϕ( )
dτ r( ) = −

!
S
!
r ,ϑ,ϕ( )+ Λ !r( )

4π
×

× d cos ′ϑ( ) dϕ'
0

2π

∫
−1

+1

∫
!
Z !r ,ϑ, ′ϑ ,ϕ −ϕ'( ) !S !r , ′ϑ ,ϕ'( )

, (3.106) 
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                                                     a                                                    b                                      c 

			 	
                                                     d                                                       e                                     f 

Fig. 3.28 The Monte Carlo simulation of the angular scattering and polarization properties for systems of small 
spherical particles (a = 50 nm) [(a)-(c)] and large spherical particles (a = 300 nm) [(d)-(f)]; M11 – refers to the total 
scattering intensity and  M12 – refers to a degree of linear polarization of the scattered light; λ=633 nm, m = 1.2, f = 
0.01; single scattering (––); multiple scattering: for the small particles diameter of the spherical system filled up by the 
particles – 1 mm (•), 2 mm (Δ), and 20 mm (o); and for the large particles diameter of the system – 0.002 mm (•), 0.2 
mm (Δ), and 2 mm (o) (calculated by I.L. Maksimova) [5]. 

 
where 

!
S  is the Stokes vector [see Eq. (3.95)]; !r  is the 

position vector; ϑ, ϕ are the angles characterizing 
incident direction, respectively, the polar (zenith) and 
the azimuth angles; dτ !r( ) = ρp

!
r( ) σext

!
r( ) ds is the 

optical path length element, ρp is the local particle 
number density, 〈σext〉 is the local ensemble-averaged 
extinction cross section [σext =σabs + σsca; see Eqs. (3.13) 
and (3.17)], ds is the path length element measured 
along the unit vector of the direction of light 
propagation; Λ is the single scattering albedo [see Eq. 
(3.20)]; ϑ′ , ϕ′ are the angels characterizing scattering 
direction, respectively the polar (zenith) and the azimuth 
angels; 

!
Z  is the normalized phase matrix

!
Z !r ,ϑ, ′ϑ ,ϕ −ϕ'( ) = R Φ( )M θ( )R Ψ( ) , where M(θ) is 

the single scattering Mueller matrix [see Eq. (3.99)]; θ 
is the scattering angle, and R(φ) is the Stokes rotation 
matrix for angle φ: 

R φ( ) =
1 0 0 0
0 cos2φ − sin2φ 0
0 sin2φ cos2φ 0
0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

. (3.107) 

Every Stokes vector and Mueller matrix are associated 
with a specific reference plane and coordinates. The 
first term on the right-hand side of VRTE [Eq. (3.106)] 
describes the change in the specific intensity vector over 
the distance ds caused by extinction and dichroism 
(deattenuation), the second term describes the 
contribution of light illuminating a small volume 
element centered at r  from all incident directions and 
scattered into the chosen direction.  

For real systems, the form of VRTE tends to be 
rather complex and often intractable. Therefore, a wide 
range of analytical and numerical techniques have been 
developed to solve the VRTE. Because of important 
property of the normalized phase matrix, Eq. (3.107), 
being dependent on the difference of the azimuthal 
angles of the scattering and incident directions rather 
than on their specific values, an efficient analytical 
treatment of the azimuthal dependence of the multiply 
scattered light, using a Fourier decomposition of the 
VRTE, is possible. The following techniques and their 
combinations can be used to solve VRTE: transfer 
matrix method, the singular eigenfunction method, the 
perturbation method, the small-angle approximation, the 
adding-doubling method, the matrix operator method, 
the invariant embedding method, and the Monte Carlo 
method.   
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When the medium is illuminated by unpolarized 
light and/or only the intensity of multiply scattered light 
needs to be computed, the VRTE can be replaced by its 
approximate scalar counterpart. In that case, in Eq. 
(3.106), the Stokes vector is replaced by its first element 
(i.e., radiance) [see Eq. (3.95)] and the normalized 
phase matrix by its (1,1) element [i.e., the phase 
function, p( !s ,!′s ) which for scattering symmetric 
relative to the direction of the incident wave is 
described by Eqs. (3.21), (3.27), (3.37) or (3.38)].  

The results of Monte Carlo simulations for polarized 
light propagation within the multiple scattering media 
with parameters close to that of tissues are shown in 
Fig. 3.28 [5]. These calculations well demonstrate that 
polarization properties of tissues could be dramatically 
transformed for the multiple scattering conditions. For 
systems of small spherical particles, the scattering 
matrix element M11, which refers to the total scattering 
intensity, shows a significant scattered light 
redistribution from the mode of isotropic scattering 
characteristic to single scattering to more intensive 
scattering mostly in the backward direction as the 
multiplicity of scattering going up with the increase of 
diameter of the spherical system filled up by the 
particles from 1 to 20 mm.  The polarization ability of 
the system originated by Rayleigh (single dipole) 
scattering (see Fig. 3.27a,b) and expressed in terms of 
the element M12, which refers to a degree of linear 
polarization of the scattered light, goes down at 
scattering multiplicity increase. The 100%-polarization 
efficiency at the scattering angle θ = 90° at single 
scattering mode is reduced significantly, to ∼20%. For a 
large particle system, its transfer from the single to the 
multiple scattering mode by changing diameter of the 
system from 0.002 to 2 mm change angular 
dependences of the elements M11 and M12 more 
dramatically than for small particles. As multiplicity of 
scattering increase a strong forward scattering transfers 
to a strong backward scattering with the shape more or 
less similar to the scattering by small particles, however 
the polarization ability at θ = 90° decreased from ∼80% 
to a few percents only.  

The Mueller matrix for the backscattering geometry 
was obtained by solving a radiative transfer equation 

with appropriate boundary conditions. Analysis of this 
matrix structure showed that its form coincides with the 
single scattering matrix for optically active spherical 
scatteres. Thus, different tissues or tissues in 
pathological or normal functional states should display 
different responses to the probing with linearly and 
circularly polarized light. This effect can be employed 
both in optical medical tomography and for determining 
optical and spectroscopic parameters of tissues.  

The depolarization length in tissues should be close 
to the mean transport path length ltr of a photon [see Eq. 
(3.43)], because this length characterizes the distance 
within which the direction of light propagation and, 
consequently, the polarization plane of linearly 
polarized light become totally random after many 
sequential scattering events (see Fig.3.14).  

Since the length ltr is determined by the parameter g 
characterizing the anisotropy of scattering, the 
depolarization length should also substantially depend 
on this parameter. Whole blood is characterized by a 
considerable depolarization length (around 4 mm) at λ = 
633 nm, which is indicative of the dependence on the 
parameter g, whose value for blood exceeds the values 
of this parameter for tissues of many other types and can 
be estimated as 0.982–0.999.  

In contrast to depolarization, the attenuation of 
collimated light is determined by the total attenuation 
coefficient µt [see Eq. (3.18)]. For many tissues, µt is 
much greater than (µa + µs′). Therefore, in certain 
situations, it is impossible to detect pure ballistic 
photons (photons that do not experience scattering), but 
forward scattered photons retain their initial polarization 
and can be used for imaging purpose [5, 9, 10, 71-77]. 
There was experimentally demonstrated that laser 
radiation retains linear polarization on the level of PL≤
0.1 within 2.5ltr. Specifically, for skin irradiated in the 
red and NIR ranges, µa ≅ 0.4 cm–1, µs′ ≅ 20 cm–1, and ltr 
≅ 0.48 mm. Consequently, light propagating in skin can 
retain linear polarization within the length of about 1.2 
mm. Such an optical path in a tissue corresponds to a 
delay time on the order of 5.3 ps, which provides an 
opportunity to produce polarization images of macro-
inhomogeneities in a tissue with a spatial resolution 
equivalent to the spatial resolution that can be achieved 
with the selection of photons by means of more 
sophisticated time-resolved techniques. In addition, 
polarization imaging makes it possible to eliminate 
specular reflection from the surface of a tissue which 
allows one to apply this technique for the imaging of 
microvessels in facile skin. Polarization images can see 
skin subsurface textural changes and allows one to erase 
melanin from image.  

The polarization imaging is a prospective direction 
in tissue optics [5, 9, 10, 71-77]. The registration of 
two-dimensional polarization patterns for the 
backscattering of a polarized incident narrow laser beam 
is the basis for this technique. The major informative 
images can be received using the backscattering Mueller 
matrix approach. To determine each of the 16 
experimental matrix elements, a total of 16 images 
should be taken at various combinations of input and 
output polarization states. Spatially-resolved reflectance 
and optical coherence tomography (OCT) imaging 
techniques are well combined with polarization method. 

3.6 Refractive index and controlling of light 
interaction with tissues 

Index of refraction of tissue compounds is of great 
importance for light tissue interaction [5, 9]. Most of 
tissues have refractive indices for visible light in the 
range of 1.335–1.620 (e.g. 1.55 for the stratum 
corneum, 1.620 for the enamel, and 1.386 at the lens 
surface). In the simplest model, the mean refractive 
index n of a tissue can be presented as the weighted 
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sum of refractive indices of the scattering center 
material ns and the ground matter n0: 

n  = fsns + (1 – fs)n0 ,  (3.108) 

where fs is the volume fraction of the scatterers.  
The ratio ns/n0 ≡ m determines the scattering 

coefficient. For example, in a simple monodisperse 
model of scattering dielectric spheres reduced scattering 
coefficient µs′ is defined by Eq. (3.44). It follows from 
Eq. (3.44) that even a 5% change in the refractive index 
of the ground matter (n0 = 1.35 → 1.42), when that of 
the scattering centers is ns = 1.47, will cause a 7-fold 
decrease of µs′. Therefore, matching of refractive index 
of the scatterers and ground material allows for 
considerable reduction of tissue scattering. This 
phenomenon is very useful for improvement of facilities 
of optical tomography and for getting more precise 
spectroscopic information from the depth of a tissue [5, 
9, 78-91]. 

Optical parameters of a tissue, in particular 
refractive index, are known to depend on water content. 
In the visible and NIR wavelength range the following 
formula can be used to evaluate water index of 
refraction as a major tissue component (λ in nm) [5]:  

nH2O =

=1.3199+ 6878
λ2

− 1.132×10
9

λ4
+ 1.11×10

14

λ6
.
 (3.109) 

For different constituents of a biological cell indices 
of refraction in the NIR can be evaluated as: 
extracellular fluid − n  = 1.35 – 1.36, cytoplasm − 1.360 
– 1.375, cell membrane − 1.46, nucleus − 1.38 – 1.41, 
mitochondria and other organelles – 1.38 – 1.41, 
melanin granules − 1.6 – 1.7. Scattering arises from 
mismatch in refractive index of the components that 
make up the cell. For tissues when cells are surrounded 
by other cells or tissue structures of similar index 
certain organelles become the important scatterers. For 
instance, the nucleus is significant scatterer because it is 
often the largest organelle in the cell and its size 
increases relative to the rest of the cell throughout 
neoplastic progression. Mitochondria (500–1500 nm in 
diameter), lysosomes (500 nm), and peroxisomes (500 
nm) are very important scatterers whose size relative to 
the wavelength of light suggests that they must give a 
significant include in the backscattering. Melanin 
granule, traditionally thought of as an absorber, must be 
considered an important scatterer because of its size and 
high refractive index. Structures consisting of 
membrane layers such as the endoplasmic reticulum or 
Golgi apparatus may prove significant because they 
contain index fluctuations of high spatial frequency and 
amplitude. Besides cell components, tissue fibrous 
structures, such as collagen and elastin fibers, must be 
considered as important scatterers.   

Index of refraction of a number of tissues at 633 nm 
is in the range from the lowest 1.368 for liver to the 
largest 1.455 for fatty tissue with other tissues between, 
such as 1.380 for lungs, 1.400 for blood and spleen, 
1.410 for muscular tissue, and 1.418 for kidney. There 
is a tendency to refraction decrease with the wavelength 
from 390 to 700 nm, in particular, for bovine muscle – 
from 1.42 to 1.39.  

In terahertz range, 0.5 – 2.5 THz, mean index of 
refraction of water, the main component of soft tissues, 
is equal to: nW ≅ 2.2 [92, 93]. For the soft tissues which 
are well supplied by water, such as muscle and skin 
(dermis), n ≅  2.1, for more dry epidermis n ≅  2.0; for a 
soft tissue with a less water content, such as adipose, n   
≅  1.65. For nail which is a hard tissue with comparably 
low water content and lack of the mineral component, n   
≅  1.8. For all other hard tissues with the lower content 
of water index of refraction is higher than for water due 
to inclusion of mineral tissue component, for tooth 
dentin n   ≅  2.4, for bone n   ≅  2.5, and for tooth 
enamel n   ≅  3.1. 

The scattering coefficient (µs) and scattering 
anisotropy factor (g) of a tissue are dependent on 
refractive index mismatch – relative index of refraction 
m [see Eqs. (3.25), (3.33), and (3.44)]. The index 
mismatch exists between cellular tissue components, 
such as cell membrane, cytoplasm, cell nucleus and 
other organelles, melanin granules, and the extracellular 
fluid. For fibrous (connective) tissue, index mismatch of 
interstitial medium and long strands of scleroprotein 
(collagen–, elastin–, or reticulin–forming fibers) is 
important. The scattering particles themselves 
(organelles, protein fibrils, membranes and protein 
globules) exhibit a higher density of proteins and lipids 
in comparison with the ground substance and, thus, a 
greater index of refraction (ns = 1.39–1.47). The 
refractive index of the interstitial liquid, as well as 
human blood plasma, is approximately 1.33–1.35, 
depending on the wavelength. The main scatterers in 
blood are red blood cells (RBCs). A hemoglobin (Hb) 
concentration of 32 g/dl represents a typical Hb 
concentration within a human RBC, and the refractive 
index of the solution is approximately 1.42. For human 
whole blood, depending on the wavelength, the index is 
approximately 1.36–1.40. 

The optical immersion technique is based on the 
impregnation of a tissue by a biocompatible chemical 
agent, which may have hyperosmotic properties [5, 9, 
78-91, 93]. The OCAs frequently used are 
monosaccharides, such as glucose, dextrose, fructose; 
polysaccharides made of many glucose molecules – 
dextrans; sugar alcohols (polyols) – glycerol, mannitol 
and sorbitol; alcohol – 1,3-butanediol; propylene glycol, 
polypropylene glycol, polyethylene glycol, 1,4-
butanediol and their combinations, such as combined 
lipophilic polypropylene glycol-based polymers and 
hydrophilic polyethylene glycol-based polymers; x-ray 
contrasting agents (verografin, trazograph, hypaque, 
omnipaque), etc. 
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There are a several main mechanisms of light 
scattering reduction induced by an OCA: 1) dehydration 
of tissue constituents; 2) partial replacement of the 
interstitial fluid by the immersion substance; 3) 
structural modification (packing); and 4) dissociation of 
collagen. The first and the third mechanisms are 
characteristic for hyperosmotic agents.  For fibrous 
tissue similar to sclera, dura mater, dermis, the second 
mechanism could be prevalent for many of tested 
chemical agents for which molecule size is much less 
than the mean cross-section of interfibrillar space. Both 
the first and the second processes mostly cause 
matching of the refractive indices of the tissue scatterers 
(cell constituents, collagen and elastin fibers) and the 
cytoplasm and/or interstitial fluid. The refractive index 
matching is manifested in the reduction of the scattering 
coefficient (µs → 0) and increase of single scattering 
directness (g → 1) (see Fig. 3.12). For fibrous tissues 
such as skin dermis, eye sclera, dura mater, tendon, 
decrease of reduced scattering coefficient 
µ's = 1− g( )µ s  can be significant. 

 
                                       a 

 
                                        b 

Fig. 3.29 Schematic representation of diffusion of the 
immersion optical clearing agent (OCA) into and water 
out of tissue specimen with light increased 
transmittance (at collinear Polarizer and Analyzer) and 
decreased scattering due to optical immersion clearing; 
(a) is the initial specimen state before optical clearing,  
(b) is the final stage when it became transparent; input 
light beam is linear polarized by a Polarizer, the output 
beam is detected being processed by linear polarization 
Analyzer for two orthogonal polarization states – one in 
parallel with the polarization of the incident beam I|| and 
another in perpendicular state I⊥; Diaphragm in the far 
field of 1-1.5 mm in diameter serves for averaging of 
speckle structures for coherent light illumination or for 
detection of collimated light transmittance. 

Structural modification is manifested as tissue 
shrinkage, it causes the near-order spatial correlation of 
scatterers (see Fig. 3.26) and, as a result, the increased 
constructive interference of the elementary scattered 
fields in the forward direction and destructive 
interference in the perpendicular direction of the 
incident light that may significantly increase tissue 
transmittance even at residual refractive index 
mismatch.  

For some tissues and for the specific pH of applied 
OCA, tissue swelling may take place that could be 
considered as a competitive process in providing tissue 
optical clearing. The optical clearing process in 
collagen-based tissues may involve a change in the 
supramolecular structure. Collagen reversible solubility 
in sugars and sugar alcohols may take place. Agent-
induced destabilization of collagen structures may lead 
to an additional reduction of optical scattering in tissue 
owing to less size of the main scatterers. 

The osmotic pressure is a driving force in the 
generation of fluid flows and controlling intensities of 
these flows, providing a several mechanisms of optical 
clearing; however, rather strong osmotic pressure may 
destroy tissue structure. This is a major physicochemical 
mechanism of OCA toxicity. 
For propagation of polarized light in fibrous tissue, it 
was shown that at a reduction of scattering, the degree 
of transmitted linearly polarized light significantly 
improves. Schematically such experiment is shown in 
Fig. 3.29. As far as the tissue is immersed, the number 
of scattering events decreases and the residual 
polarization degree of transmitted linearly polarized 
light increases. As a result, the kinetics of the average 
transmittance and degree of polarization of the tissue are 
correlated. Compare kinetics of clearing curves for 
linearly polarized component of transmitted intensity I|| 
and the total transmitted intensity IT in Fig. 3.30. OCA-
induced optical clearing leads to an increase in the 
length of depolarization of a number of tissues. Figure 
3.30 also demonstrates the reversibility of tissue 
clearing by successive OCA and physiological solution 
application.  

As the spatially coherent laser beam was used in this 
experiment speckle pattern transformation accompanied 
optical clearing effects (see inserted far-field speckle 
patters in Fig. 3.30) [5]. Transmitted intensities IT, I||, 
and I⊥ were measured as mean speckle intensities 
averaged over the scanning trace (1.5 mm) in the 
paraxial region. It is well seen that the speckle patterns 
are transferred from small-size and more or less 
homogeneously distributed speckles, characteristic for 
multiple scattering, to big-size inhomogeneously 
distributed speckles with a big portion of ballistic 
photons in the central part of the pattern, which is due to 
low-scattering regime.   

As other two examples of in vitro studies of optical 
clearing in the visible range, cerebral membrane (dura 
mater) and skin dermis could be presented. In the course 
of clearing during 20 min, the reduced scattering 
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Fig. 3.30 The time-dependent transmittances (Ii/I0) of the human sclera specimen (d = 0.4 mm) measured with a 
diaphragm at λ = 633 nm for linear polarization of the incident laser beam I0; Ii = I||, I⊥ are two orthogonal polarization 
components of the transmitted light; I|| in parallel to the polarization of the incident beam and I⊥ – in perpendicular;  IT 
= I|| + I⊥; the subsequent measurements for the specimen kept at first in 60%-trazograph OCA solution, zone (1); in 
physiological solution (0.9% NaCl), zone (2), and again in the OCA solution, zone (3); inserts show speckle patterns in 
the transmitted field before and after optical clearing without polarization filtration [5]. 

 
coefficient µ's of dura mater decreases up to 40% 
(aqueous mannitol solution, 0.16 g/ml, n = 1.357). 
Application of anhydrous glycerol (n = 1.47) during 20 
min to skin dermis decreases µ's of skin up to 75%. 
Differences in the degree of tissue clearing can be 
explained by differences in refractive indices of the used 
OCAs, their osmolarity and initial state of tissue 
turbidity. The swelling of dura mater samples was 
observed, whereas skin shrinkage during the clearing. 

Not only soft but also hard tissues could be 
effectively cleared, which opens the way for the 
development of the least-invasive techniques for laser 
diagnostics and therapy of brain and other tissues 
hidden under bone, cartilage or tendons. For example, 
optical immersion clearing of the cranial bone under 
action of anhydrous glycerol allows for decreasing µ's  
of superficial tissue layers in an hour by approximately 
25% for the wavelength range 1400–2000 nm. In this 
case, the main role in the clearing process plays the 
diffusion of OCA into the interstitial space, owing to the 
bone-specific structure having a rather high porosity. 

The multiple scattering is a detrimental factor that 
limits optical coherence tomography (OCT) imaging 
performances: imaging resolution, depth and 
localization. To improve the imaging capabilities, the 
multiple scattering of tissue and blood must be reduced. 
The immersion technique at application of 
biocompatible agents is a prospective technique for 
OCT, because very easily the depth of OCT images and 
their contrast can be essentially improved at immersion. 
The OCT measures reflectance, R(z),  from the tissue 
versus axial ranging distance, or depth, z. The 
relationship between R(z) and µt can be approximately 
by [88] 

R z( ) = I0α z( )exp −µ t z( ) , (3.110) 

where I0 is the optical power launched into the tissue 
sample and α(z) is the reflectivity of the sample at the 
depth z; α(z) is linked to the local refractive index and 
the backscattering property of the sample. If α(z) is a 
constant, µt can be obtained theoretically from the 
reflectance measurements at two different depths, z1 and 
z2: 

µ t =
1
Δz( ) ln

R z1( )
R z2( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

, (3.111) 

where Δz = |z1 − z2|.  
Optical clearing (enhancement of transmittance) 

ΔTOCT by an agent application can be estimated using 
the following expression  

ΔTOCT =
Ra − Rs
Rs

×100%  , (3.112) 

where Ra is the reflectance from the backward surface of 
the sample impregnated by an agent, and Rs is that with 
a control sample.   

Blood immerses or goes through practically all 
tissues. It is a highly scattering biological liquid with a 
strong anisotropy of scattering. Therefore, blood optical 
clearing is of great importance [5, 78-80, 88]. The 
refractive-index mismatch between erythrocyte 
cytoplasm and blood plasma, as well as specific size and 
structure, cause the scattering properties of blood. The 
refractive index of erythrocyte cytoplasm is defined 
mostly by hemoglobin concentration. The volume and 
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shape of a single erythrocyte are defined by blood 
plasma osmolarity. Blood scattering also depends on 
aggregation or disaggregation capability of RBCs. Upon 
introduction of OCAs into blood, the refractive index of 
the blood plasma increases and becomes comparable 
with that of RBCs. For example, in whole blood diluted 
to twice of its volume by saline with the addition of 
6.5% glycerol, the total attenuation coefficient
µ t = µa + µ s was reduced from 42 to 20 cm–1, and the 
optical penetration at 820 nm was correspondingly 
increased to 117% in terms of ΔTOCT . For the other 
agents tested (glucose, dextrans, propylene glycol and 
trazograph), the enhancement of penetration ΔTOCT = 
20–150%.  

There is also the possibility of applying as an 
immersion agent, a small amount of hemoglobin, which 
could be released owing to local hemolysis of RBCs 
within the vessel area close to endoscopic optical probe. 
A 30–40% reduction of the scattering coefficient of 
blood in the spectral range from 400 to 1000 nm, with 
an increase in the local RBC hemolysis up to 20% is 
expected. The optical clearing of blood is defined not 
only by refractive-index matching phenomenon, but 
also by changes in the size of RBCs and in their 
aggregation ability when chemicals are added. 

It is known that at in vivo application of the designed 
optical immersion technology, additional factors such as 
metabolic reaction of living tissue on clearing agent 
application, the specificity of tissue functioning and its 
physiological temperature can significantly change 
kinetic characteristics and the magnitude of the clearing 
effect. In a living tissue, the relative refractive index is a 
function of tissue physiological or pathological state. 
Depending on the specificity of the tissue state, the 
refractive index of the scatterers and/or the background 
may be changed (increased or decreased), and therefore 
light scattering may correspondingly increase or 
decrease. For example, the µ's calculated at a 
wavelength of 700 nm on the basis of in vivo spectral 
reflectance measurements for rabbit eye sclera (Fig. 
3.31) [5] and in vitro spectral transmittance 
measurements for human sclera at administration of 
40%-glucose solution showed the clearing degree for in 
vivo study of 1.7 fold – that is, less than for in vitro 
(~2.7 fold). Less efficiency for in vivo conditions may 
be explained by glucose washing out from the area of 
administration and physiological reaction of the living 
tissue. 

In the terahertz range, where scattering is negligible 
and transport of radiation in tissues mostly depends on 
tissue absorption properties, in particular by tissue water 
absorption which absorption coefficient is rather high, 

µa ≅100 − 300cm
−1 . For normal muscle tissue 

absorption coefficient is also high, µa ≅120 −160cm
−1 , 

however when tissue is dehydrated by application of a 
hyperosmotic agent absorption decreases up to 30–40% 
and tissue becomes more transparent [93]. 

 

 

Fig. 3.31 Reflectance spectra for the rabbit eye sclera 
measured concurrently with administration of 40% -
glucose solution in 1, 4, 21, and 30 min after a few 
drops of the solution into the eye [5].  

Topical application of OCAs to skin is less efficient 
because of protective properties of the stratum corneum 
(SC), thus different chemical and physical enhancers of 
skin permeability are used [5, 9, 78-91]. The typical 
chemical enhancers are: ethanol, propylene glycol, 
dimethylsulfoxide (DMSO), linoleic and oleic acids, 
azone and thiazone. To reduce the barrier function of 
skin epidermis, physical methods such as tape stripping, 
microdermabrasion, low intensive and high intensive 
laser irradiation of skin surface, iontophoresis, 
ultrasound and photomechanical (shock) waves, needle-
free injection, photothermal and mechanical micro-
perforation, or laser fractional micro-damaging were 
proposed. 
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