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ABSTRACT

The propagation of dust-acoustic solitary waves in an magnetized collisionless plasma consisting of positive and 
negative dust, electrons and ions with Boltzmann distribution are examined. For nonlinear dust acoustic waves 
(DAWs), a reductive perturbation method was employed to obtain the Kortewege-de Vries (KdV) equation for the 
first-order potential. As the wave amplitude enlarged, the width and velocity of the wave deviate from the prediction 
of the KdV equation. Higher order analysis of the perturbed (KdV) equation was used to the fifth-order dispersion 
term. The effects of higher-order corrections on dust acoustic solitary structures are studied and discussed.
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INTRODUCTION
Dusty plasma is an ionized gas containing 

small particles of solid matter which acquire a large 
electric charge by collecting electrons and ions from 
the plasma, which has been observed widely in 
astrophysical plasma and environment, such as 
plasmas in inplanetary rings, in circum-solar dust 
grains, in the interplanetary medium, in cometary 
comae and tails, in asteroid zones, in mesosphere and 
magnetosphere, and in interstellar molecular clouds
[1,2]. Because of the involving of the charged dust 
grains in plasmas, different types of collective 
processes exist and very rich wave modes can be 
excited in dusty plasmas such as, DA waves [3,4]
dust ion acoustic (DIA) waves [5,6], dust-lattice (DL) 
waves [7,8]. The charging of dust grains occurs due 
to a variety of processes [9-11]. Mamun and Shukla 
[12] have considered dusty plasma model, which 
consists of positive and negative dust only, and have 
theoretically investigated the properties of linear and 
nonlinear electrostatic waves in such a dusty plasma. 
The dusty plasma model of Mamun and Shukla [12] 
is only valid if a complete depletion of the 
background electrons and ions is possible, and both 
positive and negative dust fluids are cold. Recently, 
El Wakil [13] investigated theoretically the higher-
order contributions to nonlinear dust-acoustic waves 
that propagates in a mesospheric dusty plasma with a 
completely depletion of background (electrons and 
ions). However, in most space dusty plasma systems 
a complete depletion of the background electrons and 
ions is not possible [14-17] and the positive dust 
component is of finite temperature [18,19]. Later, 
Attia et. al. [20] investigated the higher order effects 
of positive and negative dust charge fluctuation on 
the propagation of dust ion acoustic waves (DIAWs) 
in a weakly inhomogeneous, weakly coupled, 
collisionless and unmagnetized mesospheric dusty 
Plasma consists of four components dusty plasma.

The evolution of small but finite-amplitude 
solitary structures in plasma systems, studied by 
means of KdV equation, is of considerable interest in 
plasma dynamics. These equations derived from 
perturbation methods such as the reductive 
perturbation theory (RPT) [21]. It was found that the 
RPT is based on the small wave amplitude, the first 
order solution would underestimate the amplitude of 
the soliton by as much as 20%. As the wave 
amplitude enlarge, the soliton width and velocity 
deviate from the prediction of KdV equation. 
Therefore, To overcome this deviation, higher-order 
corrections must be taken into account [22-26]. So, 
our motive here is to study the effect of the higher-
order dispersion term on the propagation velocity, the 
amplitude, and the width in four component plasma. 
The organization of the paper is as follows: In 
Section 2 we present the basic set of fluid equations 
governing our plasma model. Section 3 contains the 
nonlinear analysis for IAWs. In Section 4, Higher 
order solution is obtained. Finally, discussions and 
conclusions are given in Sections 5.
2. BASIC EQUATIONS

Let us consider a homogeneous system of a 
magnetized collisionless plasma consisting of a four-
component dusty plasma with massive, micron-sized, 
positively, negatively dust grains and nonthermal 
elcetron and ion. This study based on the condition 
that, the negative dust particles are much more 
massive than positive ones [27,28]. The dynamics of 
the nonlinear DA waves in the presence of an 
external magnetic field 00 = BeB x


of such system 
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for negative dust plasma.
Equations (2.1) and (2.2) are supplemented by 
Poisson’s equation:
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In the above equations n and u are the density and 
velocity of positively charged dusty grains while N

and v are the density and velocity of negatively 
charged dusty grains, en and in are the density of 
electrons and ions, φ and p are the electric potential 
of dust fluid and the thermal pressure of the 
positively charged dust fluid, respectively. Here n
and N are normalized by their equilibrium values 

on and oN . u and v are normalized by sC = ,TVρ

,/= 21 mZmZ pnρ ,)/(= 2
1

1mTkZV iBpT )( np ZZ , represents 
the number of the positive (negative) charges on the 
dust grain surface, )( 21 mm represents the mass of the 
positive (negative) dust particle, Bk is the Boltzmann 
constant, iT is the temperature of the ions, p is 

normalized by pBo Tkn , since pT is the temperature 
of the positively charged dust fluid, and φ is 
normalized by eTk i /β , x is the space variable 
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µ .  1Ω and 2Ω are the positive and 

negative charged dust cyclotron frequencies 
normalized to plasma frequency.

3. NONLINEAR ANALYSIS

According to the general method of reductive 
perturbation theory (RPT), we introduce the slow 
stretched co-ordinates:

,2
3

tετ =
                                }              (3.1)

( )tzmylx λες −Γ++= 2
1

where ε is a small dimensionless expansion 
parameter and λ is the wave speed normalized 
by sC . Γmandl, are the directional cosines of the 

wave vector k along the yandzx, axis. All 
physical quantities appearing in (2.1) are expanded as 
power series in ε about their equilibrium values as:
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The charge-neutrality condition in the dusty plasma is 
always maintained through the relation

0.=1 ie µµµ −+−                        (3.3)
We impose the boundary conditions that as:  

0.=0,==1,=1,==, φζ vupNn∞→   (3.4)
Substituting (3.1) and (3.2) into (2.1)-(2.3) and 
equating coefficients of like powers of ε . Then, 
from the lowest-order equations in ε , the following 
results are obtained:
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Poisson’s equation gives the linear dispersion relation
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The next-order of the perturbation gives:
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For Positive dust plasma and
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And for negative dust plasma  and Poisson’s equation 
gives:
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Eliminate the second order perturbed quantities 

2222 ,,, νNun and 2φ in equations (3.7-3.11), we 
derive the KdV equation;
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Equation (12) adimts the hall-mark soliton solution.
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where η is the transformed coordinate with respect 
to a frame moving with velocity ϑ .

4. HIGHER ORDER CORRECTION
As it well know, Equation (3.12) contains the lowest-
order nonlinearity and dispersion. Its validity is 
restricted to waves of only small amplitudes. 
However, as the wave amplitude ncreases, the width 
and velocity of a soliton deviate from the prediction 



4
Progress of Nonlinear Dust Acoustic Waves 

 

of the KdV equation. In order to describe DAWs with 
an inlarged amplitude, higher-order effects must be 
taken into account. In particular, we add to the well 
known KdV equation additional fifth order dispersion 
term as a higher-order one,
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where δ is a smallness parameter. In the case of δ
0= , equation (4.1) reduces identically to the well 

known KdV equation (3.12). Due to the secularities 
included in the last term of equation (4.1), it could 
not be solved exactly, e.g. only trivial solutions 
(travelling waves) were found by classical Lie group-
method; for a correct solution we rather have to rely 
on a the perturbation method, in which the 
secularities embedded in the perturbed term are 
separated such that the equations in each order of δ
are secular. In  the following we introduce another 
transformation ϑτξη −= to recast equation (4.1)
is introduced into
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In order to solve equation (4.2), a simple 
method constructed by (Watanabe and Jiang 1993)
is introduced for finding a higher-order solitary wave 
solutions. Accordingly, expanding 1φ and ϑ as well 
with respect to the smallness parameter δ ,
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Substituting equation (4.3)  into equation (4.2) and 
comparing the coefficients of like power in ,δ one 
arrives at the following numbers of coupled ordinary 
differential equations:    
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.
2

= 3

3

00 ηη
ψ

η
ϑ

d
dB

d
dA

d
dL ++−        (4.5)

In fact, this differential operator is the single-
variable version of the linearized KdV operator. To 
obtain the solutions, solving equatios (4.4a-4.4d) 
successively and subject them to the boundary 

conditions ( ),,...2,1,00 == iiψ 0=
η
ψ

d
d i , and 

0=2

2

η
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d
d i for ±∞→η .Equation (4.4a) is 

fulfilled by a solitary wave solution of the form
),(= 2
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where the soliton amplitude mψ and the soliton 

width 1−D are
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Note that equation (4.6) is just a single-soliton 
solution of  the KdV equation.

In the next order of δ substituting equation 
(4.6) into Equation (4.4b), we obtain :
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Equation (4.2) is a third-order linear 
differential equation associated with inhomogeneous 
terms on the right-hand side. The homogeneous 
equation, 01 =ψL , satisfying the boundary 
conditions, has a solution that is proportional to 

( ) ( )ηη DDsech tanh2 . Let us assume here a 
solution of the above equation of the form:

)()(= 4
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2
11 ηµηµψ DsechDsech +       (4.8)

with 1µ and 2µ representing constants, which can 
readily be proved by re-substitution. Then, it is easily 
to observe that the coefficient of ( )ηDsech2 on the 

left-hand side cancels out and 1ψL is expressed in 

terms of ( )ηDsech4 and ( )ηDsech6 . In that 
case, it will be obviously that the coefficient of 

( )ηDsech2 on the right-hand side should vanish, 
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which leads to the first order correction of the 
velocity 
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The coefficients in equation (4.8) can be 
found to constitute the solution:
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In order to evaluate next orders of δ , we 
introduce equations (4.6),(4.7) and (4.10) into (4.4c-
4.4d), and after algebric manipulation we can get,
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Finally, combining now equations. (4.6), (4.9), 
(4.10), (4.11) and (4.12), we can obtain the solution 
of the perturbed KdV equation. This solution are 
expressed by power series of lower-order solutions 
thus eliminating secularities, that the wave velocity 
depends on δ only to the first order, while the shape 
(profile of potential) of  solitary wave depends on all 
orders of δ .
5 DISCUSSIONS and CONCLUSIONS:

To make the results physically relevant, 
numerical calculations were performed referring to 
typical dusty plasma parameters as given in Ref. 
[29,30]. The effect of ρ and v on the the higher-

order potential amplitude mψ in Figs.1. It is seen 
that the present system supports comprisive solitons. 
However, the effect of 2Ω and dσ on the higher 
order solitons amplitude are shown in Fig.2. it is 
noticed that, ρ and v increases the soliton 

amplitude but 2Ω and dσ is found to decrease the 

soliton amplitude. On the other hand, one of our 
motivations was to study the effect of smallness 
perturbation parameter ε on formation of  the 
broadband electrostatic noise. For example, Fig. 3 
and Fig. 4 Show that, the perturbation parameter ε
increases the amplitude and decreases the width of 
higher order soliton and the related electric field. In 
summary, it has been found that the presence of ρ
and dσ and ε would modify the properties of the 
DAWs and the results presented here should be 
helpful for understanding salient features of localized 
electrostatic perturbations in space and laboratory 
plasma.

Fig. 1. Variation of the higher-order potential amplitude vs. ρ
for 0.1=σ and 0.04.=ε for different values of .v

Fig.2 Variation of the higher-order potential amplitude vs. 2Ω
for 0.04=v and 0.05.=ε for different values of .dσ
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Fig.3 Variation of the higher-order potential φ vs. η for 

0.08,=v 0.6=δ and 0.1=p for different values 

of .ε

Fig.4 Variation of the associated higher-order electric field 
structures E vs. η for 0.08,=v 0.6=δ for different 

values of .ε
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