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Background:Neuroinflammation is one of the key factors leading to neuron death

and synapse dysfunction in Alzheimer’s disease (AD). Amyloid-β (Aβ) is thought to

have an association withmicroglia activation and trigger neuroinflammation in AD.

However, inflammation response in brain disorders is heterogenous, and thus, it is

necessary to unveil the specific gene module of neuroinflammation caused by Aβ

in AD, whichmight provide novel biomarkers for AD diagnosis and help understand

the mechanism of the disease.

Methods: Transcriptomic datasets of brain region tissues from AD patients and the

corresponding normal tissues were first used to identify gene modules through

the weighted gene co-expression network analysis (WGCNA) method. Then,

key modules highly associated with Aβ accumulation and neuroinflammatory

response were pinpointed by combining module expression score and functional

information. Meanwhile, the relationship of the Aβ-associated module to the

neuron and microglia was explored based on snRNA-seq data. Afterward,

transcription factor (TF) enrichment and the SCENIC analysis were performed on

the Aβ-associated module to discover the related upstream regulators, and then a

PPI network proximitymethodwas employed to repurpose the potential approved

drugs for AD.

Results: A total of 16 co-expression modules were primarily obtained by the

WGCNA method. Among them, the green module was significantly correlated

with Aβ accumulation, and its function was mainly involved in neuroinflammation

response and neuron death. Thus, the module was termed the amyloid-β

induced neuroinflammation module (AIM). Moreover, the module was negatively

correlated with neuron percentage and showed a close association with

inflammatory microglia. Finally, based on the module, several important TFs were

recognized as potential diagnostic biomarkers for AD, and then 20 possible drugs

including ibrutinib and ponatinib were picked out for the disease.

Conclusion: In this study, a specific gene module, termed AIM, was identified as

a key sub-network of Aβ accumulation and neuroinflammation in AD. Moreover,

the module was verified as having an association with neuron degeneration
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and inflammatory microglia transformation. Moreover, some promising TFs and

potential repurposing drugs were presented for AD based on the module. The

findings of the study shed new light on the mechanistic investigation of AD and

might make benefits the treatment of the disease.

KEYWORDS

Alzheimer’s disease, neuroinflammation, amyloid-β, data integration, drug

repurposing

1. Introduction

Alzheimer’s disease (AD) is a complex brain disorder that
can explain nearly 60%−70% of worldwide dementia (Holtzman
et al., 2011). With increasing prevalence and lacking effective
treatment, more than 150 million people are estimated to be
affected by AD in 2050 (GBD 2019 Dementia Forecasting
Collaborators, 2022). Traditional drug research mostly focused
on amyloid-β (Aβ), one extracellular hallmark of AD, but all
failed except aducanumab that is approved by FDA in 2021,
which is still controversial (Doig et al., 2017; Karran and De
Strooper, 2022). On the other hand, neuroinflammation has been
acknowledged as another important indication of events of AD
development. A reduced AD risk is observed in clinics when anti-
inflammatory drugs were used in some epidemiological research
(Akiyama et al., 2000). As an inflammation response event in
the brain of AD patients, Aβ accumulation was thought to be
the key trigger of the disease. Some relevant targets and possible
drugs have been presented but most of them do not gain the
expected results in clinics due to the poor understanding of
neuroinflammation caused by Aβ accumulation (Miguel-Álvarez
et al., 2015; Fu et al., 2019; Dhapola et al., 2021). Therefore, it is
necessary to systematically investigate the underlying network of
neuroinflammation induced by Aβ which could facilitate to deeply
comprehend the AD pathological mechanism and find a possible
therapeutic approach.

Weighted gene co-expression network analysis (WGCNA)
is an effective method to infer the trait-specific functional
gene regulatory network (GRN) based on transcriptomic data
(Langfelder and Horvath, 2008). For example, Feng et al.
(2022) identified a cancer-associated fibroblast (CAF)-related
module for ovarian cancer through the method. Lin et al.
(2021) investigated the calcium signaling pathway-related GRN in
ischemic stroke using the method. Additionally, the technology
of single-cell RNA sequencing (scRNA-seq) has been developed
in recent years to obtain the transcriptomic characteristics
of individual cells in a tissue, which greatly contributes to
discovering the key cell populations in a specific biological
state (Kolodziejczyk et al., 2015; Andrews et al., 2021). For
example, Obradovic et al. (2021) explored the cellular atlas
of tumor microenvironment in clear cell renal carcinoma and
identified the infiltrating macrophage subtype by comparing
scRNA-seq data of the tumor tissue and the corresponding
adjacent normal tissue. Derived analytic strategies such as cell
communication analysis and master regulon inference will be
of great benefit to understanding the roles of specific cell

populations in a certain disease (Jin et al., 2021; Kumar et al.,
2021). Compared to scRNA-seq, single-nucleus RNA-seq (snRNA-
seq) is more suitable for frozen or hard-to-dissociate samples,
especially brain tissues (Lake et al., 2016). In addition, spatial
transcriptome (ST) provides precise transcriptomic heterogeneity
of adjacent small spots in tissue (Longo et al., 2021). In
this study, module identifying and drug repositioning analysis
were conducted to elucidate the underlying mechanism of AD
and find potential repurposing drugs for the disease. As the
study flowchart showed (Figure 1), we first constructed the gene
regulatory networks based on the transcriptomic data of AD
patients and normal controls through the WGCNA method. Then,
an Aβ-induced neuroinflammation module for AD was picked
out based on the expression score and functional information.
Afterward, the module was correlated with the neuron and
distinct subtype of microglia to reveal its possible roles in
the process of neuroinflammation development. Finally, several
transcription factors regulating the module were presented as
biomarkers for AD diagnosis, and 20 repurposing drugs against AD
neuroinflammation were provided.

2. Materials and methods

2.1. Public transcriptomic data collection

AD-related transcriptomic data (detailed information is shown
in Table 1) were mainly downloaded from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo) database. In
practice, three microarrays (GSE44768, GSE44770, and GSE44771)
datasets of the cerebellum (CR), dorsolateral prefrontal cortex
(PFC), and visual cortex (VC) were collected, which included 129
late-onset Alzheimer’s disease (LOAD) patients and 101 healthy
controls. The probe ID was transformed into a gene symbol based
on GPL4372 platform annotation information. Moreover, RNA-
seq data with TPM normalized of the frontal cortex (BA9) from
120 normal brain samples (age >60) were downloaded from the
Genotype-Tissue Expression project (GTEx, https://gtexportal.org/
home/datasets). In addition, we obtained spatial transcriptomic
data on 12 anatomical brain regions of AppNL−G−F KI and
C57Bl/6J mice in 3, 6, 12, and 18 months (GSE152506), where
each spot covered tissues with a diameter of 100µm. Noteworthily,
the Aβ plaque condition of these spots was inferred according to
immunostaining assays of adjacent brain sections. Furthermore,
we collected snRNA-seq data of the PFC region (BA10, containing
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FIGURE 1

Flowchart of this study, which includes four main analysis steps. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001.

24 AD samples and 24 control samples) from the Synapse
database (syn18485175).

2.2. Weighted gene co-expression network
analysis

Principal component analysis (PCA) was performed to check
the difference between the AD and control group samples. Then,

the weighted gene co-expression network analysis (WGCNA)
was applied according to the recommended pipeline (https://
horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/
WGCNA/Tutorials/index.html, WGCNA package of R software,
version 1.71). In practice, genes with higher standard deviation
among all samples were first filtered. Then, we removed distinct
outlier samples by the “cutreeStatic” function, and the threshold
of the scale-free topology index was set to 0.9. Afterward, the
co-expression modules were identified by the “blockwiseModules”
function, where the default parameters were used except for setting
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TABLE 1 Public transcriptomic datasets used in this study.

Type GSE GPL Organism Selected sample information

Microarray GSE44768 GPL4372 Homo sapiens 230 cerebellum (CR) samples from LOAD patients and healthy controls

Microarray GSE44770 GPL4372 Homo sapiens 230 dorsolateral prefrontal cortex (PFC) samples from LOAD patients and
healthy controls

Microarray GSE44771 GPL4372 Homo sapiens 230 visual cortex (VC) samples from LOAD patients and healthy controls

RNA-seq GTEx V8 / Homo sapiens 212 normal brain frontal cortex (BA9) sample

snRNA-seq Syn18485175 / Homo sapiens Prefrontal cortex (BA10) from 24 AD individuals and 24 non-AD individuals

Spatial
transcriptomics

GSE152506 GPL19057 Mus musculus 2D-RNAseq on coronal section of AppNL−G−F KI mice and C57Bl/6J mice at
3,6,12, and 18 months of age

“corType” to “bicor” and “mergeCutHeight” to 0.1. Next, we
calculated the correlation between each module and sample trait
(AD or control) based on module eigengenes.

2.3. Module hub gene identification and
logistic regression analysis

The unassigned gray module and modules with a large size
(over 1,000 genes) were first dropped from the WGCNA result.
Then, for the genes of the remaining modules, their module
membership (known as kME) was evaluated by calculating the
expression correlation with module eigengenes. The higher kME
value (0–1) for a gene module pair means the gene is an important
(central) element in the module. Therefore, the top 10 genes with
the highest kME of each module were marked as hub genes.

For logical regression analysis, we used module hub gene
expression as features and sample grouping as a binary indicator
variable. AD patients were labeled “1” and healthy controls were
labeled “0.” The R package mlr3 (version 0.13.4) was applied to
build the logical regression model. The metric of Area Under the
Precision-Recall Curve (AUPRC) was used for robust evaluation,
and themedian of three replicates of five-fold cross-validation (CV)
was calculated to compare the performance of different models.

2.4. Calculation of module expression score

For microarray or RNA-seq datasets, the single-sample Gene
Set Enrichment Analysis (ssGSEA) was performed to obtain the
relative expression intensity of target modules. In practice, the
“gsva” function (“ssgsea” method) of the GSVA package (version
1.42.0) was utilized to calculate the module score based on the
expression matrix. For microglia cells in snRNA-seq data and
spatial transcriptome datasets, expression count matrixes were first
loaded into the Seurat package (version 4.1.1) and then normalized
mainly for the library-size effect. Next, the “AddModuleScore”
function was applied to calculate the expression score of modules
for each cell or spot. As for each sample of the snRNA-seq data, their
expression count matrixes were summarized to pseudo-bulk RNA-
seq expression matrixes, and then the GSVA package was applied to
calculate the overall expression score for the target module.

2.5. Functional annotation for genes of
target modules

Seventeen immune-related gene (IRG) lists including 1,793
genes were first downloaded from the ImmPort website (https://
www.immport.org/resources). Meanwhile, three classic pathway
sets [including Gene Ontology Biological Process (GOBP), Kyoto
Encyclopedia of Genes and Genomes (KEGG), and Reactome
Pathway] were collected from the MsigDB database (https://www.
gsea-msigdb.org/gsea/msigdb/). Then, the clusterProfiler package
(version 4.2.2) was utilized to perform functional enrichment
analysis based on pathway sets for genes of target modules, where
the adjusted p-value threshold was set to 0.05. Additionally, human
protein–protein interaction (PPI) information was extracted from
the STRING database (https://string-db.org), where the combined
score threshold was set to 600 to obtain credible interactions.

2.6. Cell-type enrichment analysis

The xCell package (version 1.1.0) was utilized to perform
the cell-type enrichment analysis and predict neuron percentage
for each sample of the microarray dataset. Then, the Spearman
correlation coefficient between neuron percentage and the module
score or expression of hub genes was calculated.

2.7. snRNA-seq data preprocessing and
analysis

The snRNA-seq data were processed with the two-dimensional
Uniform Manifold Approximation and Projection (UMAP)
method implemented in the Seurat package (version 4.1.1) of R
software to display cell types. Then, cell types were annotated
based on the description of the original manuscript (Mathys
et al., 2019), which included eight cell types, i.e., excitatory
neurons (Ex), inhibitory neurons (In), microglia (Mic), astrocytes
(Ast), oligodendrocytes (Oli), oligodendrocyte progenitors (Opc),
endothelial (End), and pericytes (Per). Among them, microglia
were further divided into four subtypes, namely, Mic0, Mic1,
Mic2, and Mic3. Subsequently, for each sample of the snRNA-
seq dataset, the correlation between neuron percentage and
the module score was calculated. Then, the module score
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of cell types and microglia subtypes was compared between
AD and control samples. Moreover, marker genes (average
log2FC >0.5, adjusted p-value <0.05) and related biological
pathways were identified for each microglia subtype. In practice,
Fisher’s exact test was performed to explore the link between
microglia subtype and module genes. Additionally, pseudo-
time trajectory among microglia subtypes was inferred using
the monocle package (version 2.26.0). Finally, master regulons
of microglia subtypes were inferred through the pySCENIC
software (version 0.11.2). In detail, the network inference and
motif enrichment were first performed to obtain potential
regulons and target genes and then the expression activity of
each regulon was evaluated through the Aucell function of
the software.

2.8. Transcription factor enrichment
analysis

A web-based tool, ChEA3 (https://maayanlab.cloud/chea3),
was used to infer the relevant regulatory TFs for interested module
genes, where the ReMap library was selected as the reference and
Fisher’s exact test was utilized as the statistical method.

2.9. Information collection for drugs and
targets

Approved small molecular drugs were acquired from the
TTD website (http://db.idrblab.net/ttd). Protein targets of these
drugs were retrieved from the ChEMBL database (https://
www.ebi.ac.uk/chembl). When a target’s pChEMBL value
was over 6, it was considered an effective one. Compound
ID transformation between PubChem CID and ChEMBL
ID was done through the PubChem Identifier Exchange
Service (https://pubchem.ncbi.nlm.nih.gov/idexchange/
idexchange.cgi).

2.10. PPI network proximity calculation
from drug targets to hub genes of the
interested module

A refined network proximity calculation method was adopted
to evaluate the relevance between drugs and the interested module
according to a previous study (Cheng et al., 2019). Here, X denoted
all targets of a drug, Y denoted hub genes of the interested
module, and d

(

x, y
)

represented the shortest PPI distance from
a specific drug target (x) to one hub gene (y) of the interested
module, while D (X,Y) reflected the average PPI distance for
a drug from its targets to the hub genes of the module. The
smaller the value of D (X,Y), the bigger the probability of
a drug effect on the module. To evaluate the significance of
the D (X,Y) value, background distributions were generated by
randomly selecting the same number of pseudo-targets 1,000
times for a specific drug. These distributions were validated to
conform to the Gaussian characteristics and µ and σ represent

the mean and standard deviation, respectively. Subsequently,
the Z score and corresponding p-value were calculated for
D (X,Y ):

D (X,Y) =

∑

x∈X

∑

y∈Y d(x, y)

‖X‖×‖Y‖
,

Z=
D (X,Y)−µ

σ
.

3. Results

3.1. WGCNA identified 16 modules and
related hub genes from the PFC region

The PFC region expression data of 129 AD and 101
control brain samples from GSE44770 were used to construct
the co-expression network. Based on probe annotation, an
expression matrix comprising 230 samples and 19,870 genes
was presented. The PCA result indicated that there was an
obvious difference in the first principal component between
groups (Figure 2A). Then, five outlier samples (over threshold
25 in hierarchical clustering) were dropped, and 5,000 highly
variable genes were identified. We opted nine for the best soft-
threshold leading to the eligible scale independence (Figure 2B).
After the WGCNA analysis, the primary 18 modules were
obtained (Figure 2C). Among these modules, the unassigned
module (gray module) and module with too many genes
(turquoise) were discarded, and thus, 16 modules were kept
for further analysis. For these remainder modules, the top
10 hub genes for each module were identified subsequently
according to strong eigengene-based connectivity (kME value;
Supplementary Table 1).

3.2. Trait analysis found that the green
module was abnormal in AD patients

As Figure 2D showed, the module eigengene of blue, green,
pink, and black had a significant positive correlation to AD while
yellow and brown modules exhibited opposite characteristics. To
further reveal the most relevant module to AD, we evaluated
the AD discrimination capability for each module based on
expression information of their hub genes via the logistic
regression model. According to the results of AUPRC assays,
we found that the green module was the best one for AD
discrimination among 16 modules with a performance median of
0.943 (Figures 2E, F). Afterward, we inspected the expression of
the top 10 hub genes (ARHGAP30, LAPTM5, ITGB2, DOCK2,
TBXAS1, NCKAP1L, SLC7A7, SYK, LCP1, and C3AP1) of the
module and found that they were all upregulated significantly
(Figure 2G), comparing the AD group with the control group.
These results implied that the green module could play a vital role
in AD progression.
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FIGURE 2

Module identification by WGCNA and primary exploration. (A) PCA dimension reduction plot for the di�erence between AD and NC samples in

GSE44770. (B) Diagram displaying di�erent soft-thresholding power and corresponding scale-free fit index. (C) Cluster dendrogram of genes with

dissimilarity based on the topological overlap before and after merging. (D) Correlation heatmap between module eigengene and AD grouping. Each

cell denoted the corresponding correlation and p-value for each module. (E) AUPRC distribution of cross-validation (CV) for 16 valid modules. (F)

Precision–recall curve for the green module. The gray area represented the confidence interval of the CV. (G) Expression di�erence for 10 hub genes

of the green module between AD and NC.

3.3. Module scoring revealed that the green
module was correlated with Aβ

accumulation

To further investigate the relationship between the green

module with AD, we calculated the overall activity of the module

and found that the ssGSEA score in AD was considerably higher
than that of the control group not only in the PFC region but
also in CR(GSE44768) and VC(GSE44771) regions (Figure 3A).
These findings implied that the green module was activated
sharply in multiple brain regions under AD conditions. Moreover,
there was no obvious difference in the gender of the disease
for the module (Figure 3B). Normal brain data from GTEx also
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FIGURE 3

Association between module activity and Aβ. (A) Boxplot of the green module ssGSEA score di�erence between AD and NC among three brain

regions. CR, cerebellum (GSE44768); PFC, dorsolateral prefrontal cortex (GSE44770); VC, visual cortex (GSE44771). (B) Boxplot of the green module

ssGSEA score di�erence between male (M) and female (F) in di�erent groups. (GEO)AD, all AD patients of above microarray data from GEO;

(GEO)NC, all healthy controls of above microarray data from GEO; (GTEx)NC, normal brain samples from the GTEx project. (C) Line plot showed an

average Aβ plaque index of di�erent age stages in AD model mice among 12 brain regions. For detailed region information, refer the link (https://

alzmap.org). (D) Line plots of the green module score di�erence at di�erent age stages between the AD model and control mice among 12 brain

regions. (E) Correlation heatmap of the Aβ plaque loading index and green module score between di�erent age stages and brain regions in AD model

mice. *p < 0.05, **p < 0.01, ***p < 0.001.

confirmed that the green module was independent of gender
(Figure 3B).

Combined with mice spatial transcriptome data (GSE152506),
the correlation between the module and amyloid plaque was
further explored. First of all, increasing amyloid deposition was
observed in most brain regions of the AD model mice from

3 to 18 months (Figure 3C). Correspondingly, we found that
the expression of the green module in the AD group showed
a significantly increasing trend during the period (Figure 3D).
However, these regions in the control group maintained relatively
low expression activity. It was worth noting that the module score
of AD and control groups was very similar in the early stage
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which implied that long-term and increasing-intensity stimulation
from Aβ could be the main reason for the high expression
of the module genes across many brain regions. Moreover,
in the old model (18-month-old) mice of the AD group, a
strongly positive correlation of module activity with the plaque
index in most regions further verified that amyloid accumulation
might be responsible for gene expression of the green module
(Figure 3E).

3.4. Functional annotation showed that the
green module was involved in
neuroinflammation

To reveal the role of the green module in AD progression,
functional annotation was conducted for the genes of the module.
According to annotation results, 44 out of the 177 genes in
the green module (Figure 4A, Supplementary Table 2) were
immune-related genes, and they were involved in antimicrobe,
antigen processing and presentation, cytokine signal transduction,
and natural killer cell cytotoxicity (Figure 4B). Subsequently,
we performed pathway enrichment analysis based on different
pathway sets (Supplementary Table 3). Biological process analysis
results showed that genes of the module were mainly associated
with TNF superfamily cytokine production, toll-like receptor
signaling, synapse pruning, neuroinflammation, and neuron
death response (Figure 4C). The signal pathway detection
result was focused on FC GAMMA-mediated phagocytosis,
cell adhesion molecules CAMs, complement, and coagulation
cascades (Figure 4D). Moreover, the significant pathway from
Reactome showed that the module was related to interleukin
signaling, DAP12 signaling, and ROS and RNS production
(Figure 4E). Above enriched pathways implied that the
gene overexpressed abnormally in the green module could
activate unexpected immune responses in the brain and boost
neuroinflammation, which was harmful to normal neurons and
synapses. Therefore, the green module was termed the Aβ-
induced neuroinflammation module (AIM) based on the above
analysis results.

3.5. Correlation analysis showed neuron
and microglia was associated with the AIM

For each sample of the microarray dataset, neuron percentage
was first predicted, and then its correlation with the AIM score
was calculated. Calculation results showed that there existed a
significantly negative correlation between neuron percentage and
AIM score (R = −0.81, p < 0.05, Figure 5A). Furthermore,
correlation coefficients of the top 10 hub genes of AIM
were calculated, respectively, and they were all below −0.6
(Figure 5B). While for samples of the snRNA-seq dataset, a
negative correlation with the AIM score was also observed in
the overall neuron (Figure 5C), excitatory neuron (Figure 5D),
and inhibitory neuron (Figure 5E). These results validated that
AIM upregulation could be responsible for neuron degeneration
in AD. In order to understand the potential mechanism, we

investigated the association between AIM and other cell types.
A remarkable AIM score was exclusively observed in microglia
(Figures 6A, B). A significantly increased AIM score was identified
for the AD group as compared to the control group in
oligodendrocytes, microglia, and astrocytes (Figure 6C). These
results suggested that AIM was associated with neuron reduction
and microglia transition.

Considering the heterogeneity ofmicroglia, microglia cells were
divided into four subtypes (Mic0, Mic1, Mic2, and Mic3) and
then the association between subtypes and AIM was explored.
Mic0 and Mic1 subtypes showed a higher association score
than other subtypes. In addition, Mic1 was the only subtype
whose association score in the AD group was significantly greater
than that in the control group (Figure 7A). Interestingly, for
the sample of Mic1, the percentage of the microglia population
was also positively correlated with AIM (R = 0.28, p = 0.056,
Figure 7B). Subsequently, marker genes of subtypes were detected,
and there were 123, 199, 295, and 106 marker genes in Mic0,
Mic1, Mic2, and Mic3, respectively (Supplementary Table 4).
Through Fisher’s exact test, we found that the marker genes
of Mic1 and Mic0 considerably overlapped with AIM genes
(Figure 7C). Pathway enrichment analysis showed that marker
genes of Mic1 were focused on synapse pruning, neuron death,
neuron apoptotic process, regulation of inflammatory response,
and positive regulation of NIK NF KAPPB signaling. While marker
genes of Mic0 were involved in GTPASE activity regulation,
synapse organization, RAS protein signal transduction, and glial
cell migration (Figure 7D). Pseudo-time trajectory analysis revealed
that Mic1 and partial Mic0 might be advanced subtypes of
microglia cells (Figures 7E–G). These results implicated that
Mic1 was a distinct subtype associated with AIM, which might
provide new clues to neuroinflammation and neuron reduction
in AD.

3.6. Transcription factor analysis found the
vital upstream regulator of the AIM

To unearth the underlying upstream transcription factors
(TFs) of AIM genes, TF enrichment analysis was performed
based on ReMap library (Keenan et al., 2019), and 24
significant TFs (p value < 0.05) were obtained as a result.
Simultaneously, Mic1-associated TFs were detected through
the SCENIC analysis, and 55 TF regulons were picked
out. Furthermore, seven overlapped TFs (SPI1, IRF4, ETV6,
STAT5A, RBPJ, CEBPA, and BCL6) were identified as important
upstream regulators (Figures 8A–C). Then, the diagnostic
value in AD discrimination of these seven TFs was verified
by comparing them with seven random human transcription
factors (Figure 8D). Among them, CEBPA expression in the
AD group was higher than that in the control group in three
brain regions (Figure 8E). Its target genes in AIM included
some known pro-inflammatory factors such as C3, IL18,
CD68, and ITGB2 (Figure 8F). According to these findings, we
speculated that CEBPA could be a crucial TF for AD involved in
microglia-mediated neuroinflammation.
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FIGURE 4

Functional annotation for the green module. (A) Diagram for the PPI network of the green module. Labels with red color represented

immune-related genes (IRGs). A combined score above 600 was considered as a reliable PPI link. (B) Donut chart of the immune categories that IRGs

in the green module involved. Enrichment analysis for green module genes using (C) GOBP, (D) KEGG, and (E) Reactome pathway set, respectively.

The threshold of BH adjusted p-value was set to 0.05.

3.7. AIM-based repurposing method aided
in anti-neuroinflammation drug discovery

To apply the therapeutic role of the AIM, we adopted a
PPI network proximity method to estimate the possible effect of
approved drugs for anti-neuroinflammation based on the AIM,
which might subsequently benefit the treatment of AD. First,
1,084 approved small molecular drugs, and their literature-based
protein targets were retrieved from public databases. Then, the
average PPI distance from drug targets to the top 10 hub genes
of AIM was calculated (Figure 9A). As for a specific drug, the
possibility of anti-neuroinflammation was estimated by the Z-score
and a p-value based on the corresponding background Gaussian
distribution (Figures 9B, C). Ultimately, the top 20 potential
drugs were presented according to the Benjamini–Hochberg (BH)
adjusted p-value (Figure 9D, Table 2). Among these drugs, six drugs
with an anti-neuroinflammation effect have been reported, which

confirmed the validity of our method, while the other 14 drugs
could be new potential small molecules for AD treatment.

4. Discussion

Alzheimer’s disease is one of the most common
neurodegenerative diseases, which is characterized by amyloid-β
(Aβ) accumulation and phosphorylated tau (ptau) (Braak and
Braak, 1991; Yuksel and Tacal, 2019). Aβ cascade hypothesis

supposes amyloid plaque is a major cause of neuron death

and synapse dysfunction (Hardy and Higgins, 1992). Although

some drugs directly target Aβ that could reduce plaque loading,

AD symptoms do not get the expected relief in clinical trials

(Lannfelt et al., 2014). On the other hand, it is increasingly
recognized that neuroinflammation is a vital event in AD onset

and progression (Hammond et al., 2019). GWAS research studies
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FIGURE 5

Correlation analysis between AIM and neuron percentage. (A) Scatter plot of the relationship between the module ssGSEA score and neuron

percentage predicted by the xCell algorithm in GSE44770 microarray samples. R represented the Spearman correlation coe�cient. (B) Bar plot

showing the Spearman correlation coe�cients between 10 module hub genes and neuron percentage predicted by the xCell algorithm in GSE44770

microarray data. (C) Scatter plot of the relationship between the module ssGSEA score and neuron percentage in syn18485175 snRNA-seq samples.

(D, E) were similar and based on excitatory and inhibitory neurons, respectively.

show that some important AD risk genes are closely related to
immune function and immune cells (Sims et al., 2017; Jansen
et al., 2019). Simultaneously, emerging evidence proposes that
amyloid plaque is responsible for microglia activation which can
cause neuroinflammation (Cheng et al., 2021; Leng and Edison,
2021). However, due to complex immune signaling and microglia
heterogeneity in the brain, immune-related therapies against AD
neuroinflammation are limited at present. More systemic research
is needed to explore the potential gene network of Aβ-induced
neuroinflammation in AD, which might help to uncover novel
biomarkers and provide a new treatment for the disease.

In this study, we successfully identified an Aβ-induced
neuroinflammation module (AIM) for AD via the WGCNA
method combined with module scoring and pathway enrichment

analysis. In practice, microarray and snRNA-seq datasets were
mainly focused on the PFC region, which was closely related to
AD symptoms (Sampath et al., 2017; Sun et al., 2022). Primary
WGCNA results based on the PFC microarray dataset indicated
that the module comprising 177 genes was one of the modules
most relevant to AD. Moreover, we also found amyloid plaque was
the major factor that affected gene expression of the AIM in the
spatial transcriptome of the AD model of mice. Genes’ function of
the module was mainly involved in the neuroinflammation-related
process discovered by pathway enrichment analysis. Aβ, comprised
of short peptides cleaved from amyloid precursor protein (APP),
is an extracellular hallmark of AD. As its well-known toxicity
of endogenous stimuli to neurons, an innate immune system
like microglia in the brain is commonly activated to exert a
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FIGURE 6

AIM-related cell type analysis. (A) UMAP plot of eight primary cell types in syn18485175 snRNA-seq. Ex, excitatory neurons; In, inhibitory neurons;

Mic, microglia; Oli, oligodendrocytes; Opc, oligodendrocyte progenitors; Ast, astrocytes; End, endothelial; Per, pericytes. (B) UMAP plot of

snRNA-seq. Each cell was colored according to AIM expression. (C) Bar plot showing AIM expression in di�erent cell types. Blue denotes the control

group and red denotes the AD group. The Wilcoxon test method was used to compare the group di�erence. ns: p > 0.05, *p ≤ 0.05, ***p ≤ 0.001,

****p ≤ 0.0001.

protective response for Aβ accumulation. However, a long-term
immune stimulus would cause a detrimental effect on the neuron
and synapse due to the unexpected inflammation response in
the brain.

As for genes in AIM, some are pro-inflammatory mediators
including cytokines (IL1B and IL18) and chemokines (CXCL16,
RNASE2, and CCR1), which can lead to neuronal dysfunction
and death (Hanisch, 2002; Micheau and Tschopp, 2003). For
example, IL1B is correlated to the loss of synaptic connections in
rat hippocampus (Mishra et al., 2012). Some genes (C3, C1QA)
about complement cascade play an important role in synapse
refinement during brain development (Schafer et al., 2012), but
aberrant upregulation and deposition of complement will lead to
synapse loss and cognitive impairment. Some AD risk genes are
also found in AIM, such as HLA-DRA, TREM2, MS4A6A, CD33,
and PIK3CG. Recent studies have revealed that CD33 and TREM2
are the two most potential targets, which play a respective pro-
/anti-neuroinflammation role during the AD process. Relevant
immunotherapies of CD33 inhibiting and TREM2 elevating have
made a little progress in a clinical trial (Griciuc et al., 2019; Griciuc
and Tanzi, 2021). Additionally, other genes of AIM might be
associated with AD neuroinflammation. For example, three hub

genes (ARHGAP30, DOCK2, and NCKAP1L), NCF, and TAGAP
are involved in the RAC1 GTPase cycle, which can regulate the
production of neurotoxic reactive oxygen species (ROS) (Etienne-
Manneville and Hall, 2002). To sum up, the AIM can be used to
pinpoint key genes about Aβ-induced AD neuroinflammation and
discover possible novel targets for the disease.

Afterward, we investigated AIM-related cell types to further
explore their roles in AD. First of all, we found a negative
correlation between AIM activity and neuron ratio in both
microarray data and snRNA-seq data, which confirmed the
potential link of the module to AD symptoms. Furthermore, we
found that microglia showed a remarkable AIM score. Microglia
is one resident innate immune cell type originating from a yolk sac
progenitor and mainly exerts immune surveillance and clearance
in the central nervous system (CNS) (Ousman and Kubes, 2012;
Gomez Perdiguero et al., 2015). Its activation against endogenous
or exogenous stimulation (such as abnormal aggregating of
some essential proteins) is an important defensive response
to reduce the currency of neurological disease (Heneka et al.,
2015). However, microglia often show spatial and morphological
heterogeneity which present complex roles and phenotypes in
neurological diseases (Plescher et al., 2018; Tan et al., 2020).
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FIGURE 7

AIM-related microglia subcluster analysis. (A) Bar plot showing AIM expression in di�erent microglia subclusters. Blue denotes the control group and

red denotes the AD group. The Wilcoxon test method was used to compare the group di�erence. ns: p > 0.05, **p ≤ 0.01. (B) Scatter plot of the

relationship between the module score and Mic1 percentage in the snRNA-seq microglia population. R represents the Spearman correlation

coe�cient. (C) Heatmap of Fisher’s exact test for the overlapped genes from the AIM to di�erent microglia subtype marker genes. The numbers in

each grid denote marker gene size, overlapped gene size, and adjusted p-value. (D) Heatmap of scaled gene expression in di�erent microglia

subtypes. C1, C2, C3, and C4 represent marker genes of Mic1, Mic2, Mic3, and Mic0, respectively. The top five marker genes for each subtype were

labeled. The right panel represented the enriched GO biological pathways of the corresponding marker gene set. The larger text size represented

more significant enrichment results. (E) Trajectory plot of cells in the reduced dimensional space. Each cell was colored by inferred states and (F) was

colored by microglia subclusters. (G) Trajectory tree of cells and each cell was colored by microglia subclusters.
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FIGURE 8

Transcription factor analysis for AIM. (A) Venn diagram displays the overlap between AIM-enriched TFs and Mic1-related TFs. (B) Bar plot of

AIM-enriched TFs. The seven shared TFs were marked by a red box. (C) Boxplot of seven overlapped TFs involved regulon activity between the Mic1

subtype and other subtypes. (D) Bar plot of AUPRC distribution of above TFs or random seven human TFs based on GSE44770 microarray data. The

model was based on a logistic algorithm. Selected TF expression was used as a feature, and sample grouping (AD or non-AD) was used as diagnostic

targets. (E) Violin plot of CEBPA expression di�erence between NC and AD is based on three microarray datasets (GSE44768, GSE44770, and

GSE44771). (F) TF network diagram shows CEBPA and its target genes in the AIM.
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FIGURE 9

Drug repurposing method based on the AIM. (A) Diagram demonstrated the average PPI network proximity calculation method from all drug targets

to module hub genes (e.g., X = 3, Y = 10). (B) Quantile-Quantile plot (QQ plot) indicated background distribution based on random pseudo-targets

conformed to Gaussian distribution well. (C) Gray density plot represents background distribution based on random three pseudo-targets and the

red dashed curve represents fitted Gaussian distribution. The brown line indicated the actual proximity of the drug. (D) The scatter plot showed the

rank of 1,084 approved drugs based on the adjusted p-value.

Moreover, its adverse activation is recognized as a risk event
of neuroinflammation in AD (Yu and Ye, 2015; Nguyen et al.,
2017). The original manuscript (Mathys et al., 2019) of snRNA-
seq data identified four microglia subtypes, and Mic1 was a
distinct microglia subtype that presented partial features of
DAM, which was derived from the mouse model and reflected
phagocytosis phenotype against Aβ particles (Keren-Shaul et al.,
2017). In this study, we validated that AIM was considerably
associated with Mic1, and then functional exploration revealed
that the subtype could mediate neuroinflammation and induce
neuron degeneration.

Next, through transcription factor (TF) enrichment analysis
and single-cell regulatory network inference and clustering
analysis, seven potential TFs related to AD (SPI1, IRF4, ETV6,
STAT5A, RBPJ, CEBPA, and BCL6) were identified. Among
these TFs, CEBPA (CCAAT/Enhancer-Binding Protein Alpha),
containing a basic leucine zipper (bZIP) domain, can recognize
the CCAAT motif in the promoters of interested target genes. It
was found that CEBPA had a higher expression in AD samples
compared to normal ones in three brain regions. It is confirmed
that CEBPA plays an important role in the proliferation and
differentiation of a myeloid progenitor, and its biallelic mutation
is highly related to acute myeloid leukemia (AML) (Leroy et al.,

2005; Wilhelmson and Porse, 2020). Emerging evidence has
uncovered its role in microglia-associated neuroinflammation.
For example, downregulated CEBPA is associated with anti-
inflammation microglia (M2) polarization (Yu et al., 2017).
Another research demonstrates that CEBPA can coordinate with
other two TFs (IRF1 and LXR) to regulate pro-inflammation
cytokine production in microglia stimulated by lipopolysaccharide
(LPS) (Gao et al., 2019). Notably, they also found that siRNA against
CEBPA can significantly inhibit the production of IL6, IL1b, and
IL5. In addition, its targets gene in AIM includes inflammatory
markers such as IL18, CD68, TYPOBP, and AD risk genes such as
ARHGAP45 and APOC1 (Xue et al., 2021; Kulminski et al., 2022).
In summary, these seven candidate TFs, especially CEBPA, could
be used as potential biomarkers for AD diagnosis.

Finally, 20 potential drugs of anti-neuroinflammation against
AD were presented based on significant network proximity. Some
of them have been proven to have an anti-neuroinflammation
effect, which reflected the validity of our method. For instance,
ponatinib is a multi-target tyrosine kinase inhibitor and ranked
first among all drugs. Previous studies reported that ponatinib
can reduce inflammation of obesity and influenza (Chen et al.,
2019; Lin et al., 2022) due to its inhibitory effect on the two
isoforms of JAK (JAK1 and JAK2). The JAK/STAT pathway plays
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TABLE 2 Top 20 repurposing drugs according to significantly close PPI network proximity.

Rank Drug ID Drug name Background distribution
(Targets|Mean|SD)

Proximity Padj Literature

1 D0H0EQ Ponatinib 53|2.867|0.056 2.428 1.95E-12 No

2 D09KTS Ibrutinib 30|2.868|0.073 2.330 5.59E-11 Yes

3 D0O0LS Entrectinib 47|2.868|0.059 2.453 2.53E-10 No

4 D0E6XR Dasatinib 95|2.867|0.041 2.627 5.97E-07 Yes

5 D0G6QF Vandetanib 62|2.867|0.051 2.605 3.60E-05 No

6 D0J5VR Idelalisib 7|2.875|0.156 2.100 6.64E-05 No

7 D0Q9EV Lifitegrast 3|2.874|0.233 1.733 7.90E-05 No

8 D03ZBT Crizotinib 106|2.867|0.039 2.678 9.25E-05 No

9 D0IQ6P Cabozantinib 22|2.867|0.086 2.459 1.21E-04 No

10 D0S5LD BAY 80-6946 6|2.875|0.172 2.067 1.33E-04 No

11 D04LVK Ceritinib 23|2.868|0.084 2.487 2.80E-04 No

12 D09GDD Regorafenib 24|2.869|0.082 2.500 3.21E-04 Yes

13 D09HNV Intedanib 163|2.867|0.03 2.736 5.42E-04 No

14 D0RU0O IPI-145 5|2.873|0.188 2.060 5.42E-04 No

15 D0W7HE Alpelisib 5|2.873|0.188 2.060 5.42E-04 No

16 D0K8KX Quercetin 34|2.868|0.068 2.579 6.51E-04 Yes

17 D0V9WF Lestaurtinib 276|2.867|0.023 2.770 6.51E-04 No

18 D0W5HK Sorafenib 74|2.867|0.047 2.666 6.51E-04 Yes

19 D01PZD Romiplostim 11|2.873|0.125 2.345 7.25E-04 No

20 D0OB0F Bosutinib 122|2.867|0.036 2.717 7.30E-04 Yes

important roles in glial activation and neuroinflammation response
inmany neurodegenerative diseases (Jain et al., 2021). Additionally,
ibrutinib is originally known as a bruton tyrosine kinase inhibitor
(BTKi) and has bioactivity against other kinases (Cheng et al.,
2014). It has been approved by FDA for multiple diseases such as
mantle cell lymphoma (MCL) and chronic lymphocytic leukemia
(CLL). A total of three genes (HCK, BTK, LYN) out of 30 Ibrutinib
targets were found in AIM, and its proximity score ranked second
among all drugs. Recent studies show that ibrutinib can attenuate
neuroinflammatory responses by inhibiting AKT/STAT3 signaling
pathways in the LPS-stimulated BV2 cell line and reduce glia
activation and cytokine levels in animal experiments (Nam et al.,
2018; Li et al., 2021). Another research further indicates that
the anti-neuroinflammation effect of ibrutinib is associated with
Aβ accumulation in 5xFAD mouse models (Lee et al., 2021). In
addition, regorafenib, ranked 11th, has been proven as having
effects on neuroinflammation suppression and dendritic spine
formation (Han et al., 2020).

There were also some limitations in our study. For 177
constituent genes in the AIM, it is important to exclude the possible
false positive genes and further recognize minor submodules that
could participate in Aβ-induced neuroinflammation in different
roles during the AD process. Moreover, a prospective study for
identified novel biomarkers and screened candidate drugs is worthy
of deep investigation through molecular biology experiments.

5. Conclusion

We identified a vital Aβ-induced neuroinflammation module
(AIM) made up of 177 genes for AD. The neuron reduction
and AIM-related inflammatory microglia subtype were further
discovered to elucidate the roles of the module. Moreover, some
potential TF biomarkers and some candidate repurposing drugs
were presented. In short, our findings provided sights into the gene
regulatory network and drug targets of AD neuroinflammation,
which might facilitate mechanistic investigation of AD and make
benefits to treatment of the disease.
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