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Abstract
In this article, with the help of three axioms (Definition 3.1), the notion of abstract morphisms is
introduced (see [1,2]). It will be proven that Hausdorff topological spaces together with abstract
morphisms create a category on which the functor of C̆ech homology is extended.
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1 Introduction
In 1976, L. Górniewicz (see [3,4]) introduced the notion of strongly admissible multi-valued mappings
and proved that the composition of strongly admissible mappings is also a strongly admissible mapping.
In 1983 it was L. Górniewicz (see [1]) as well that introduced the notion of a morphism, i.e. some other
version of strongly admissible mappings. Morphisms, as opposed to strongly-admissible mappings,
together with Hausdorff topological spaces create a category on which a functor of C̆ech homology is
extended. In 1994, W. Kryszewski (see [2]) introduced the notion of a morphism essentially different
from the morphism in the sense of Górniewicz in regard to some important applications of their
properties. In this article, with the help of three axioms, the notion of an abstract morphism was

*Corresponding author: E-mail: slosmiro@gmail.com

www.sciencedomain.org


British Journal of Mathematics and Computer Science 4(21), 3077-3089, 2014

introduced. This notion does not only encompass already existing morphisms, but also all the other
morphisms that could be created on the basis of these axioms. The examples of other essentially
different morphisms were given. The fixed point theorem was proven for the abstract morphisms. In
terms of fixed point theory, we recommend the following publications: [4,3] as well as [5,6,7].

2 Preliminaries

Let X and Y be Hausdorff topological spaces. Assume that for every x ∈ X a non-empty and
compact subset ϕ(x) of Y is given. In such a case we say that ϕ : X ( Y is a multi-valued mapping.
For a multi-valued mapping ϕ : X ( Y and a subset A ⊂ Y , we let:

ϕ−1(A) = {x ∈ X; ϕ(x) ⊂ A}.

If for every open U ⊂ Y the set ϕ−1(U) is open, then ϕ is called an upper semi-continuous mapping;
we shall write that ϕ is u.s.c. Let H∗ be the C̆ech homology functor with compact carriers and
coefficients in the field of rational numbers Q from the category of Hausdorff topological spaces and
continuous maps to the category of graded vector spaces and linear maps of degree zero. Thus,
for any pair (X,A), we have H∗(X,A) = {Hq(X,A)}q≥0, a graded vector space and, for any map
f : (X,A) → (Y,B), we have the induced linear map f∗ = {f∗q}q≥0 : H∗(X,A) → H∗(Y,B), where
f∗q : Hq(X,A) → Hq(Y,B) is a linear map from the q-dimensional homology Hq(X,A) of the pair
(X,A) into the q-dimensional homology Hq(Y,B) of the pair (Y,B). If A = ∅ then H∗(X,A) =
H∗(X). A space X is acyclic if:

(i) X is non-empty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

A continuous and closed mapping f : X → Y is called proper if for every compact set K ⊂ Y the
set f−1(K) is nonempty and compact. A proper map p : X → Y is called Vietoris provided for every
y ∈ Y the set p−1(y) is acyclic.

Let u : E → E be an endomorphism of an arbitrary vector space. Let us put N(u) = {x ∈ E :

un(x) = 0 for some n}, where un is the nth iterate of u and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u),
we have the induced endomorphism ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible
provided dimẼ <∞.

Let u = {uq} : E → E be an endomorphism of degree zero of a graded vector space E = {Eq}. We
call u a Leray endomorphism if

(i) all uq are admissible,
(ii) almost all Ẽq are trivial. For such u, we define the (generalized) Lefschetz number Λ(u) of u

by putting
Λ(u) =

∑
q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [4]). The following important property of the Leray
endomorphism is a consequence of the well-known a formula tr(u ◦ v) = tr(v ◦ u) for the ordinary
trace.
Proposition 2.1. (see ([4])) Assume that, in the category of graded vector spaces, the following
diagram commutes
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Then, if u′ or u′′ is a Leray endomorphism, so is the other; and, in that case,

Λ(u′) = Λ(u′′).

An endomorphism u : E → E of a graded vector space E is called weakly nilpotent if for every q ≥ 0
and for every x ∈ Eq, there exists an integer n such that un

q (x) = 0. Since, for a weakly nilpotent
endomorphism u : E → E, we have N(u) = E, we get:
Proposition 2.2. (see ([4])) If u : E → E is a weakly-nilpotent endomorphism, then Λ(u) = 0.
The symbol D(X,Y ) will denote the set of all diagrams of the form

X
p←−−−−− Z

q−−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous map. Each such
diagram will be denoted by (p, q).
Definition 2.3. (see [4]) Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈ D(Y, T ). The composition of the
diagrams

X
p1←−−−−− Z1

q1−−−−−→ Y
p2←−−−−− Z2

q2−−−−−→ T,

is called the diagram (p, q) ∈ D(X,T )

X
p←−−−−− Z1 4q1p2 Z2

q−−−−−→ T,

where Z1 4q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},
p = p1 ◦ f1, q = q2 ◦ f2,

Z1
f1←−−−−− Z1 4q1p2 Z2

f2−−−−−→ Z2,

f1(z1, z2) = z1 (Vietoris map), f2(z1, z2) = z2 for each (z1, z2) ∈ Z.
It shall be written

(p, q) = (p2, q2) ◦ (p1, q1).

From the Theorems ((40.5), (40.6)) ([4], p. 201, 202) it also results that in Definition 2.3 the composition
of the diagrams satisfies the condition:

for each x ∈ X q(p−1(x)) = q2(p−1
2 (q1(p−1

1 (x)))). (2.1)

Let Id : X → X be an identity map.
Definition 2.4. [2] Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼k (p2, q2) (in the sense of Kryszewski)

if and only if there exist spaces Z1, Z2 and a homeomorphism h : Z1 ( Z2 such that the following
diagram:

X
p1←−−−−− Z1

q1−−−−−→ YyId

yh

yId

X
p2←−−−−− Z2

q2−−−−−→ Y
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is commutative, that is
p2 ◦ h = p1, q2 ◦ h = q1.

Definition 2.5. [4,1] Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼g (p2, q2) (in the sense of Górniewicz)

if and only if there exist spaces Z1, Z2 and the continuous mapping g : Z1 → Z2, h : Z2 → Z1 such
that the following diagrams:

X
p1←−−−−− Z1

q1−−−−−→ Y X
p1←−−−−− Z1

q1−−−−−→ YyId

yg

yId

xId

xh

xId

X
p2←−−−−− Z2

q2−−−−−→ Y, X
p2←−−−−− Z2

q2−−−−−→ Y,

are commutative, that is

p2 ◦ g = p1, q2 ◦ g = q1 and p1 ◦ h = p2, q1 ◦ h = q2.

Theorem 2.6. [2,4,1] The relations introduced in Definitions 2.4 and 2.5 are equivalency relations in
the set D(X,Y ).
Recall that if p : X → Y is a Vietoris map then p∗ : H∗(X) → H∗(Y ) is an isomorphism. Let
(p, q) ∈ D(X,Y ). We have the following diagram:

H∗(X)
p∗←−−−−− H∗(Z)

q∗−−−−−→ H∗(Y ). (2.2)

Theorem 2.7. [2,4,1] Let (p1, q1), (p2, q2) ∈ D(X,Y ). The relations introduced in Definitions 2.4 and
2.5 satisfy the following conditions:
2.7.1 for each x ∈ X

(((p1, q1) ∼k (p2, q2)) or ((p1, q1) ∼g (p2, q2)))⇒ (q1(p−1
1 (x)) = q2(p−1

2 (x))),

2.7.2 (((p1, q1) ∼k (p2, q2)) or ((p1, q1) ∼g (p2, q2)))⇒ (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ),
2.7.3 Let (p3, q3), (p4, q4) ∈ D(Y, T ). Then

((p1, q1) ∼k (p2, q2) i (p3, q3) ∼k (p4, q4))⇒ (((p3, q3) ◦ (p1, q1)) ∼k ((p4, q4) ◦ (p2, q2))),

((p1, q1) ∼g (p2, q2) i (p3, q3) ∼g (p4, q4))⇒ (((p3, q3) ◦ (p1, q1)) ∼g ((p4, q4) ◦ (p2, q2))).

The set Mk(X,Y ) = D(X,Y )/∼k
will be called a k-morphism while the set Mg(X,Y ) = D(X,Y )/∼g

will be called a g-morphism. From Theorem 2.7 we get the following definition:
Definition 2.8. For any ϕk ∈ Mk(X,Y ) (ϕg ∈ Mg(X,Y )) the set ϕ(x) = q(p−1(x)) where ϕk =
[(p, q)]k (ϕg = [(p, q)]g) is called an image of the point x in the k-morphism ϕk (g − morphism ϕg)
where (p, q) ∈ D(X,Y ).
A map ϕ : X ( Y is compact, if ϕ(X) ⊂ Y is a compact set. Let (p, q) ∈ D(X,X), where
p, q : Z → X. We say that p and q have a coincidence point if there exists a point z ∈ Z such that
p(z) = q(z). Let z ∈ Z and let x = p(z). We observe that

(p(z) = q(z))⇔ (x ∈ q(p−1(x))). (2.3)

Theorem 2.9. [4] Let X be a metrizable space. Consider a diagram:

X
p←−−−−− Z

q−−−−−→ X,
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in which X ∈ ANR, p is Vietoris and q is compact. Then q∗ ◦ p−1
∗ is a Leray endomorphism and

Λ(q∗ ◦ p−1
∗ ) 6= 0 implies that p and q have a coincidence point.

Definition 2.10. Let X and Y be metrizable spaces. We say that a continuous map f : X → Y is
universal if for each continuous map g : X → Y f and g have a coincidence point.
Let R be a real number set and let [0, 1] ⊂ R be an interval. Let

[0, 1]n = [0, 1]× [0, 1]× ...× [0, 1] (n− th [0, 1]).

Theorem 2.11. (see [8,9]) Let X be a connected metrizable space. If there exists a universal
map f : X → [0, 1]n then dimX ≥ n.

3 Abstract Morphisms
In this paragraph we assume that all spaces are Hausdorff topological spaces. With the help of
Theorem 2.7, we will introduce the notion of an abstract morphism.
Definition 3.1. Let (p1, q1), (p2, q2) ∈ D(X,Y ). The equivalency relation in the set D(X,Y ) is called
a constructor of morphisms (it is denoted as ∼a), if the following conditions are satisfied:
3.1.1 ((p1, q1) ∼a (p2, q2))⇒ (for each x ∈ X q1(p−1

1 (x)) = q2(p−1
2 (x))),

3.1.2 ((p1, q1) ∼a (p2, q2))⇒ (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ),
3.1.3 Let (p3, q3), (p4, q4) ∈ D(Y, T ). Then

((p1, q1) ∼a (p2, q2) and (p3, q3) ∼a (p4, q4))⇒ (((p3, q3) ◦ (p1, q1)) ∼a ((p4, q4) ◦ (p2, q2))).

The condition (3.1.1) will be called an axiom of topological equality, the condition (3.1.2) - an axiom
of homological equality, and the condition (3.1.3) - an axiom of composition.
The setMa(X,Y ) = D(X,Y )/∼a will be called a set an abstract morphisms (a-morphisms). Definition
3.1 (condition 3.1.1) leads to the following:
Definition 3.2. Let (p, q) ∈ D(X,Y ). For any ϕa ∈ Ma(X,Y ) the set ϕ(x) = q(p−1(x)) where
ϕa = [(p, q)]a is called an image of the point x in the a-morphism ϕa. We denote by

ϕ : X →a Y (3.1)

a multi-valued map determined by an a-morphism ϕa = [(p, q)]a ∈ Ma(X,Y ) and will called an
abstract multi-valued map.

The mapping ϕ : X ( Y is called strongly admissible (see [4]) if there exists a diagram (p, q) ∈
D(X,Y ) such that for every x ∈ X

q(p−1(x)) = ϕ(x). (3.2)

Such a mapping can be represented by many a-morphisms. Let Sn denote a sphere in Euclidean
space Rn+1.
Example 3.3. Let ϕ : Sn ( Sn be a strongly admissible mapping described as in the example (40.7)
([4], p. 202). Then there exist (p1, q1), (p2, q2) ∈ D(Sn, Sn) such that for every x ∈ Sn

q1(p−1
1 (x)) = q2(p−1

2 (x)) = ϕ(x), but q1∗ ◦ p−1
1∗ 6= q2∗ ◦ p−1

2∗ .

Hence, and from Definition 3.1 (3.1.2) it results that

(p1, q1) �a (p2, q2).

For single-valued mappings there is the following fact:
Proposition 3.4. Let f : X → Y be a continuous map and let fa ∈ Ma(X,Y ) be an a-morphism
such that for each (p, q) ∈ fa q(p−1(x)) = f(x) for each x ∈ X. Then q = f ◦ p for each (p, q) ∈ fa.
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Proof. Let (p, q) ∈ fa. Then from the assumption we have for each x ∈ X q(p−1(x)) = f(x), where
p : Z → X is a Vietoris map and q : Z → Y is a continuous map. Let z ∈ Z. Then there exists a point
x1 ∈ X such that z ∈ p−1(x1). Hence we get

q(z) = f(x1) = f(p(z)),

and the proof is complete.

Let TOP denote categories in which Hausdorff topological spaces are objects and continuous mappings
are category mappings. Let TOPa denote categories in which Hausdorff topological spaces are
objects and abstract multi-valued maps (see (3.1)) are category mappings. According to Definition
3.1 (3.1.3) the category of TOPa is well defined and TOP ⊂ TOPa. Let VECTG denote categories
in which linear graded vector spaces are objects and linear mappings of degree zero are category
mappings.
Theorem 3.5. The mapping H̃∗ : TOPa → VECTG given by the formula

H̃∗(ϕ) = q∗ ◦ p−1
∗ ,

where ϕ is an abstract multi-valued map determined by ϕa = [(p, q)]a is a functor and the extension
of the functor of the C̆ech homology H∗ : TOP→ VECTG.

Proof. From the axiom of homological equality it results that the mapping H̃∗ is well defined. From
Proposition 3.4 it results that if ϕ : X →a X is an identity then (p, p) ∈ ϕa where p : Z → X is some
Vietoris mapping. Hence

H̃∗(ϕ) = p∗ ◦ p−1
∗ = Id∗.

Let ϕ : X →a Y and ψ : Y →a T and let (p1, q1) ∈ ϕa and (p2, q2) ∈ ψa. We have the following
commutative diagrams (see Definition 2.3):

Z1
q1−−−−−→ Y

p2←−−−−− Z2 H∗(Z1)
q1∗−−−−−→ H∗(Y )

p2∗←−−−−− H∗(Z2)xId

xId

xId∗

xId∗

Z1
f1←−−−−− Z1 4q1p2 Z2

f2−−−−−→ Z2 H∗(Z1)
f1∗←−−−−− H∗(Z1 4q1p2 Z2)

f2∗−−−−−→ H∗(Z2),

that is
p2 ◦ f2 = q1 ◦ f1 and p2∗ ◦ f2∗ = q1∗ ◦ f1∗.

Hence
p−1
2∗ ◦ q1∗ = f2∗ ◦ f−1

1∗ .

We have:

H̃∗(ψ ◦ ϕ) = (q2 ◦ f2)∗ ◦ (p1 ◦ f1)−1
∗ = (q2)∗ ◦ ((f2)∗ ◦ (f1)−1

∗ ) ◦ (p1)−1
∗ =

= (q2)∗ ◦ ((p2)−1
∗ ◦ (q1)∗) ◦ (p1)−1

∗ = ((q2)∗ ◦ (p2)−1
∗ ) ◦ ((q1)∗ ◦ (p1)−1

∗ ) = H̃∗(ψ) ◦ H̃∗(ϕ).

It shall be noticed that if f : X → Y is a continuous function (f ∈ TOP), then from Proposition 3.4 it
results that if (p, q) ∈ fa then q = f ◦ p. Hence what follows is

H̃∗(f) = q∗ ◦ p−1
∗ = (f ◦ p)∗ ◦ p−1

∗ = (f∗ ◦ p∗) ◦ p−1
∗ = f∗ ◦ (p∗ ◦ p−1

∗ ) = f∗ = H∗(f)

and the proof is complete.

From the point of view of C̆ech homologies, abstract multi-valued maps behave similarly to single-
valued mappings.
Let X0 ⊂ X, Y0 ⊂ Y and let (p, q) ∈ D(X,Y ) such that q(p−1(X0)) ⊂ Y0. We shall denote by

p : p−1(X0)→ X0 p(z) = p(z), q : p−1(X0)→ Y0 q(z) = q(z) for all z ∈ p−1(X0). (3.3)
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We observe that from Definition 2.3:

(p, q) = (p, q) ◦ (Id, i), (3.4)

where
X0

Id←−−−−− X0
i−−−−−→ X

p←−−−−− Z
q−−−−−→ Y

i : X0 → X is an inclusion given by formula i(x) = x for each x ∈ X0. From the axiom of composition
(see Definition 3.1) and (3.4) we get the following fact:
Proposition 3.6. Let X0 ⊂ X, Y0 ⊂ Y and let (p1, q1), (p2, q2) ∈ D(X,Y ) such that q1(p−1

1 (X0)) ⊂
Y0 and q2(p−1

2 (X0)) ⊂ Y0. Then (p1, q1), (p2, q2) ∈ D(X0, Y0) (see 3.3) and

(p1, q1) ∼a (p2, q2)⇒ (p1, q1) ∼a (p2, q2).

We recall that the mapping ϕ : X ( Y is acyclic if for every x ∈ X the set ϕ(x) is compact and
acyclic.
Remark 3.7. Each mapping strongly admissible (see (3.2)) in particular acyclic (see [4]) is determined
by a some a-morphism.

4 Fixed points of Abstract Morphisms
In this paragraph we assume that all spaces are metrizable. Let ψ : X →a X be an abstract multi-
valued map determined by an a-morphism ψa ∈Ma(X,X). It shall be denoted as

H̃∗(ψ) = ψ∗ (see Theorem 3.5)

and if the homomorphism ψ∗ : H∗(X) → H∗(X) is a Leray endomorphism, then the generalized
Lefschetz number of ψ will be denoted by the symbol

Λ(ψ) = Λ(ψ∗).

Let X0 ⊂ X. A map ϕ : (X,X0) ( (X,X0) is an abstract multi-valued map if and only if the map
ϕX : X ( X given by

ϕX(x) = ϕ(x) for each x ∈ X
is an abstract multi-valued map and ϕX(X0) ⊂ X0. Then from Proposition 3.6 the map ϕX0 : X0 (
X0 given by formula

ϕX0(x) = ϕ(x) for each x ∈ X0

is an abstract multi-valued map. Let (p, q) ∈ (ϕX)a, p, q : Z → X. We shall denote by p̃ :
(Z, p−1(X0)) → (X,X0) p̃(z) = p(z), q̃ : (Z, p−1(X0)) → (X,X0) q̃(z) = q(z) for all z ∈ Z. We
observe that (p̃, q̃) ∈ ϕa and (p, q) ∈ (ϕX0)a (see (3.3)). We have the following diagram:

H∗(X,X0)
p̃∗←−−−−− H∗(Z, p

−1(X0))
q̃∗−−−−−→ H∗(X,X0), (4.1)

where p̃∗ is an isomorphism (see [4]). Assume that

q̃∗ ◦ p̃−1
∗ : H∗(X,X0)→ H∗(X,X0) (4.2)

is a Leray endomorphism. For such a ϕ, we define the Lefschetz number Λ(ϕ) of ϕ by putting

Λ(ϕ) = Λ(q̃∗ ◦ p̃−1
∗ ). (4.3)

The Lefschetz number of ϕ (see (4.3)) mapping is well defined. It is the result of Proposition 3.6 and
the following well-known mathematical fact:
Proposition 4.1. (see [4]) Let X0 ⊂ X be a nonempty set and let (p, q) ∈ D(X,X) such that
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q(p−1(X0)) ⊂ X0. If any two of endomorphisms q̃∗ ◦ p̃−1
∗ : H∗(X,X0) → H∗(X,X0) (see (4.2)),

q∗ ◦ p−1
∗ : H∗(X) → H∗(X), q∗ ◦ p−1

∗ : H∗(X0) → H∗(X0) (see (3.3)) are Leray endomorphisms,
then so is the third and

Λ(q̃∗ ◦ p̃−1
∗ ) = Λ(q∗ ◦ p−1

∗ )− Λ(q∗ ◦ p
−1
∗ ).

From the axiom of homological equality, Proposition 4.1 and (4.3) we get the following fact:
Proposition 4.2. Let ϕ : (X,X0) →a (X,X0) be an abstract multi-valued map. If any two of
endomorphisms ϕ∗ : H∗(X,X0) → H∗(X,X0), (ϕX)∗ : H∗(X) → H∗(X), (ϕX0)∗ : H∗(X0) →
H∗(X0) are Leray endomorphisms, then so is the third and

Λ(ϕ) = Λ(ϕX)− Λ(ϕX0).

Let A ⊂ X be a nonempty set and let ϕ : X ( Y be a map. We have a map ϕA : A ( Y given by
formula

ϕA(x) = ϕ(x) for each x ∈ A. (4.4)

Let ϕ : X ( X. The following mapping:

ϕn = ϕ ◦ ϕ ◦ ... ◦ ϕ (n-th ϕ) (4.5)

will be denoted by the symbol ϕn : X ( X where n is a natural number. We recall the following
definition:
Definition 4.3. We say that an u.s.c. map ϕ : X ( X is a compact absorbing contraction (we write
ϕ ∈ CAC(X)) if there exists an open set U ⊂ X such that the following conditions are satisfied:
4.3.1 ϕU : U ( U is a compact map (see (4.4)) (ϕU (U) ⊂ U ),
4.3.2 for each x ∈ X there exists a natural number n(x) such that ϕn(x)(x) ⊂ U (see (4.5)).
From Proposition 42.2 (see [4], p. 209) we get the following result:
Proposition 4.4. If an abstract multi-valued map ϕX ∈ CAC(X) then for every diagram (p, q) ∈
(ϕX)a the homomorphism

ϕ∗ = q̃∗ ◦ p̃−1
∗ : H∗(X,U)→ H∗(X,U) (see (4.2))

is weakly nilpotent.
Theorem 4.5. Let ϕX : X →a X be an abstract multi-valued map and let X ∈ ANR. Assume that
ϕX ∈ CAC(X) (see Definition 4.3). Then ϕX is a Leray endomorphism and if Λ(ϕX) 6= 0 then ϕX

has a fixed point (there exists x ∈ X such that x ∈ ϕX(x)).

Proof. We observe that ϕ : (X,U) ( (X,U) given by formula

ϕ(x) = ϕX(x) for each x ∈ X

is an abstract multi-valued map. From the axiom of homological equality, (4.3), Proposition 4.4 and
Proposition 4.2, ϕ∗ is weakly nilpotent and

Λ(ϕ) = 0.

The abstract multi-valued map ϕU is compact (for each (p′, q′) ∈ (ϕU )a q
′ is compact) and U ∈ ANR,

so is a Leray endomorphism. Hence and from Proposition 4.2, (ϕX)∗ is a Leray endomorphism and

Λ(ϕX) = Λ(ϕU ). (4.6)

Assume that Λ(ϕX) = Λ(q∗ ◦ p−1
∗ ) 6= 0 for some diagram (p, q) ∈ (ϕX)a, where p : Z → X is a

Vietoris map and q : Z → X is continuous. Then from (4.6)

Λ(ϕU ) = Λ(q∗ ◦ p
−1
∗ ) 6= 0 (see (3.3), Proposition 3.6)
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and from Theorem 2.9 there exists a coincidence point z ∈ p−1(U) ⊂ Z such that

p(z) = q(z).

Hence p(z) = q(z). From (2.3) for p(z) = x ∈ U ⊂ X we have

x ∈ q(p−1(x)) = ϕX(x) (the axiom of topological equality))

and the proof is complete.

5 Other Examples of Abstract Morphisms
In this paragraph we assume that all spaces are metrizable. First, the following two facts should be
proven:
Proposition 5.1. Let (p1, q1), (p2, q2) ∈ D(X,Y ) and (p3, q3), (p4, q4) ∈ D(Y, T ). Assume that

(p, q) = (p3, q3) ◦ (p1, q1) and (r, s) = (p4, q4) ◦ (p2, q2).

If the following diagrams:

X
p1←−−−−− Z1

q1−−−−−→ Y Y
p3←−−−−− Z3

q3−−−−−→ TyId

yf

yId

yId

yg

yId

X
p2←−−−−− Z2

q2−−−−−→ Y, Y
p4←−−−−− Z4

q4−−−−−→ T

are commutative, that is

p2 ◦ f = p1, q2 ◦ f = q1 and p4 ◦ g = p3, q4 ◦ g = q3,

where f and g are single-valued maps (not necessarily continuous) then there exists a single-valued
map h : Z1 4q1p3 Z3 → Z2 4q2p4 Z4 (see Definition 2.3) such that the diagram:

X
p←−−−−− Z1 4q1p3 Z3

q−−−−−→ TyId

yh

yId

X
r←−−−−− Z2 4q2p4 Z4

s−−−−−→ T

is commutative.

Proof. We define a map
h : Z1 4q1p3 Z3 → Z2 4q2p4 Z4 (5.1)

given by formula
h(z1, z3) = (f(z1), g(z3)) for each (z1, z3) ∈ Z1 4q1p3 Z3.

The map h is well defined. Let (z1, z3) ∈ Z1 4q1p3 Z3. We have

q2(f(z1)) = q1(z1) = p3(z3) = p4(g(z3)).

Hence (f(z1), g(z3)) ∈ Z2 4q2p4 Z4. We show that the diagram is commutative. Let (z1, z3) ∈
Z1 4q1p3 Z3 then (see Definition 2.3)

r(h(z1, z3)) = r(f(z1), g(z3)) = p2(f(z1)) = p1(z1) = p(z1, z3),

s(h(z1, z3)) = s(f(z1), g(z3)) = q4(g(z3)) = q3(z3) = q(z1, z3)

and the proof is complete.
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Proposition 5.2. Let (p1, q1), (p2, q2) ∈ D(X,Y ). Assume that the following diagram:

X
p1←−−−−− Z1

q1−−−−−→ YyId

yf

yId

X
p2←−−−−− Z2

q2−−−−−→ Y

is commutative, that is
p2 ◦ f = p1, q2 ◦ f = q1,

where f : Z1 → Z2 is a continuous map. Then the following conditions are satisfied:
5.2.1 for each x ∈ X q1(p−1

1 (x)) = q2(p−1
2 (x)),

5.2.2 q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ .

Proof. 5.2.1 Let x ∈ X. We have

q1(p−1
1 (x)) = (q2 ◦ f)((p2 ◦ f)−1(x)) = q2(f(f−1(p−1

2 (x)))) = q2(p−1
2 (x)).

5.2.2 We observe that from the assumption the homomorphism f∗ is an isomorphism and

q1∗ ◦ p−1
1∗ = (q2 ◦ f)∗ ◦ (p2 ◦ f)−1

∗ = (q2∗ ◦ f∗) ◦ (p2∗ ◦ f∗)−1 =

= (q2∗ ◦ f∗) ◦ (f−1
∗ ◦ p−1

2∗ ) = q2∗ ◦ (f∗ ◦ f−1
∗ ) ◦ p−1

2∗ = q2∗ ◦ p−1
2∗

and the proof is complete.

Of course many other abstract morphisms can be constructed, at least with regard to the kind of
mappings used in their definition. It shall be reminded that the mapping f : X → Y satisfies the
Lipschitz condition that if there exists a real number L ≥ 0 such that for every x, y ∈ X

dY (f(x), f(y)) ≤ LdX(x, y),

where dX , dY are metrics in spaces X,Y respectively.
Example 5.3. Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼L (p2, q2)

if and only if there exist spaces Z1, Z2 and the mappings satisfying the Lipschitz condition g : Z1 →
Z2, h : Z2 → Z1 such that the following diagrams:

X
p1←−−−−− Z1

q1−−−−−→ Y X
p1←−−−−− Z1

q1−−−−−→ YyId

yg

yId

xId

xh

xId

X
p2←−−−−− Z2

q2−−−−−→ Y, X
p2←−−−−− Z2

q2−−−−−→ Y,

are commutative, that is

p2 ◦ g = p1, q2 ◦ g = q1 and p1 ◦ h = p2, q1 ◦ h = q2.

It shall be noticed that (∼L) is an equivalence relation in the set D(X,Y ) because the identity
map satisfies the Lipschitz condition (reflexivity) and the composition of two mappings satisfying the
Lipschitz condition also satisfies the Lipschitz condition (transitivity). The symmetry is a direct result
of the definition of the relation. It is easy to prove that (∼L) is the constructor of L-morphisms (see
Proposition 5.1 and Proposition 5.2)

ϕL = [(p, q)]L ∈ML(X,Y ),

where (p, q) ∈ D(X,Y ).
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Example 5.4. Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼V (p2, q2)

if and only if there exist spaces Z1, Z2 and the Vietoris mappings p : Z1 → Z2, p
′ : Z2 → Z1 such

that the following diagrams:

X
p1←−−−−− Z1

q1−−−−−→ Y X
p1←−−−−− Z1

q1−−−−−→ YyId

yp

yId

xId

xp′
xId

X
p2←−−−−− Z2

q2−−−−−→ Y, X
p2←−−−−− Z2

q2−−−−−→ Y,

are commutative, that is

p2 ◦ p = p1, q2 ◦ p = q1 and p1 ◦ p′ = p2, q1 ◦ p′ = q2.

The justification that (∼V ) is an equivalence relation in the set D(X,Y ) is similar to the justification
from Example 5.3. The relation is obviously the constructor of V -morphisms (see Proposition 5.1 and
Proposition 5.2)

ϕV = [(p, q)]V ∈MV (X,Y ),

where (p, q) ∈ D(X,Y ).
Metric spaces X and Y are isometric if there exists a surjection f : X → Y (isometry) such that

dY (f(x1), f(x2)) = dX(x1, x2), for each x1, x2 ∈ X,

where dX , dY are metrics of spaces X and Y respectively.
Example 5.5. Let (p1, q1), (p2, q2) ∈ D(X,Y ).

(p1, q1) ∼I (p2, q2)

if and only if there exist isometric spaces Z1, Z2 and an isometry g : Z1 → Z2 such that the following
diagram:

X
p1←−−−−− Z1

q1−−−−−→ YyId

yg

yId

X
p2←−−−−− Z2

q2−−−−−→ Y,

is commutative, that is
p2 ◦ g = p1, q2 ◦ g = q1.

It is clear that the isometry is a homeomorphism and the mapping inverse to an isometry is also an
isometry. Hence we get:

p1 ◦ g−1 = p2, q1 ◦ g−1 = q2, (5.2)

where g−1 : Z2 → Z1 is an isometry inverse to g. From (5.2) results the symmetry of the relation.
Reflexivity and transitivity can be justified in a similar way to how it was done in the previous examples.
It is clear that the relation is the constructor of I-morphisms (see Proposition 5.1 and Proposition 5.2)

ϕI = [(p, q)]I ∈MI(X,Y ),

where (p, q) ∈ D(X,Y ).
It shall be noticed that for (p, q) ∈ D(X,Y ), we get the following:

[(p, q)]I ⊂ [(p, q)]k ⊂ [(p, q)]V and [(p, q)]I ⊂ [(p, q)]L ⊂ [(p, q)]g.

Let [0, 1] ⊂ R be an interval in the set of real numbers R. The following example will be given by the
end of this article now (see [4,2]):
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Example 5.6. Let f : [0, 1]→ [0, 1] be a map given by formula f(x) = 1 for each x ∈ [0, 1]. We have
commutative diagrams:

[0, 1]
pf←−−−−− Γf

qf−−−−−→ [0, 1] [0, 1]
pf←−−−−− Γf

qf−−−−−→ [0, 1]yId

yh

yId

xId

xg

xId

[0, 1]
p1←−−−−− [0, 1]× [0, 1]

q1−−−−−→ [0, 1], [0, 1]
p1←−−−−− [0, 1]× [0, 1]

q1−−−−−→ [0, 1],

where
Γf = {(x, y) ∈ [0, 1]× [0, 1] : y = f(x)} ≈ [0, 1]× {1},

pf (x, 1) = x, qf (x, 1) = 1, p1(x, y) = x, q1(x, y) = 1, h(x, 1) = (x, 1) and g(x, y) = (x, 1) for each
(x, y) ∈ [0, 1]× [0, 1]. We observe that

(pf , qf ) ∼L (p1, q1)

(the mappings g and h satisfy the Lipschitz condition with the constant L = 1)

(pf , qf ) �I (p1, q1) (spaces [0, 1] and [0, 1]× [0, 1] are not isometric),

(pf , qf ) �V (p1, q1)

(there does not exist a Vietoris mapping [0, 1]→ [0, 1]× [0, 1] (see Theorems 2.9, 2.11)).

Remark 5.7. Let (p1, q1), (p2, q2) ∈ D(X,Y ). The poorest relation of equivalence (the classes of
abstracts consist of a single element) that is the constructor of Id-morphisms (Id is an identity map)
is a relation defined in the following way:

((p1, q1) ∼Id (p2, q2))⇔ (p2 ◦ Id = p1 and q2 ◦ Id = q1).

It can be proven that the relation of equivalence given by the formula:

((p1, q1) ∼A (p2, q2))⇔

⇔ ((for each x ∈ X q1(p−1
1 (x)) = q2(p−1

2 (x))) and (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ))

is the constructor of absolute morphisms (A-morphisms) and its classes of abstracts encompass all
diagrams that satisfy the axioms of topological and homological equivalence.

6 Conclusions
Abstract morphisms can be created according to where and how they are to be applied. They will
be used in many different fields such as: fixed point theory, differential inclusion, or theory of multi-
domination (see [10]).
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[9] Holsztyński W. Universal mappings and fixed point theorems, Bull. Acad. Poln. Sci. 1967;15:433-
438.
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