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ABSTRACT 

Characteristics of Mode I crack near the interface of elasticity matched but plasticity and strength mismatched materials 
differ from those of the crack in a homogenous body. Interface body of different strength influences the plastic or cohe-
sive zone at the crack tip in parent body. The mathematical model for load line opening of the crack near the interface in 
linear elastic regime involves singular integrals. The paper presents explicit solution of these integrals with the help of 
Cauchy’s principal value theorem. Cases of thin and thick welds between the materials are investigated. Solutions of the 
integrals are well substantiated. Final results are provided in a consolidated form. 
 
Keywords: Crack Opening Displacement; Singular Integrals; Strength Mismatch; Weld Interface; Cauchy’s Principal 

Value Theorem 

1. Introduction 

The material behaviour at the tip of the Mode I crack in a 
homogenous body is in general very complex and diffi-
cult to describe by continuum mechanical models. The 
crack tip region where the material undergoes degrada-
tion or damage is known as the process region. Refer 
Figure 1(a). Micro-mechanical processes, viz. micro- 
cracking in brittle materials and void initiation and coa-
lescence in ductile materials create new traction free sur-
faces or cracks in process region. Yielding occurs outside 
the process region. This zone is called as the plastic or 
cohesive zone. Cohesive zone is considered as the crack 
extension under the action of closing cohesive stress 
generated by elastic constraint exerted by surrounding 
non-yielded material over the cohesive zone. The cohe-
sive stress is assumed equal to material yield strength in 
plane stress and 3  times the yield strength in plane 
strain conditions. Qualitative characteristics of the cohe-
sive zone were experimentally verified by Hahn et al. [1]. 
They conducted experiments on cracked steel specimens 
and found the cohesive zone, as shown in Figure 1(b), 
by etching the polished surface in front of the crack tip. 

In a bimaterial comprising elasticity identical but plas-
ticity and strength mismatched constituents (like steels), 
the Mode I crack near the interface has the characteristics 
similar to the one in homogeneous parent body as long as 
the cohesive zone is in the parent body alone. The effect 
of approaching interface body of different strength is not 

felt by the crack in such a stage because of similar elastic 
properties across the interface. But as the crack grows 
and reaches nearer to the interface, the increasing mag-
nitude of crack tip stress field causes the cohesive zone 
to develop in the interface body. Consequently, the part 
of cohesive zone in the interface body is subjected to 
cohesive stress different from that acting over its portion 
in the parent body that triggers the effect of strength mis- 
match across the interface over the crack tip. The effect 
continues with increasing intensity as the cohesive zone 
spreads deeper into the interface body with crack growth 
and reaches the maximum when the crack tip touches the 
interface body with the cohesive zone fully in the inter- 
face body. 

Cases of thin and thick welds between the steels are 
examined. Thin weld, obtained by non-fusion, solid state 
like friction welding between dissimilar steels leads to a 
single thin interface whereas a thick weld by fusion 
bonding from electron or laser beam welding results in 
two interfaces, one between the parent body and the weld 
and the other between the weld and the interface body. 
The parent body, the weld and the interface body have 
similar elastic properties but variable strengths of com-
parable magnitudes. 

2. Problem Definition 

Solution for load line opening of the crack is obtained by 
modeling its cohesive zone. Complex potentials are used  
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Figure 1. Crack tip cohesive zone and its experimental 
validation; (a) Crack tip cohesive zone; (b) Cohesive zone 
observed experimentally by Hahn et al. [1]. 
 
for this purpose in linear elastic regime. 

2.1. Crack Near Thin Weld (Refer Figure 2) 

Half load line crack opening, v, in the cohesive zone of 
size, r, in parent body A in stage I, Figure 2(a), subjected 
to cohesive stress, A , under far field applied stress  
intensity parameter, , is of the following form 

[2]:  
appliedK

  0

2 1
d  

2π

Ar
appliedK rv

x E xr xr x

  
 

      
 


  (1) 

where, , is the modulus of elasticity of parent 
body, A. On integrating Equation (1), the expression for v, 
as the function of distance x from the crack tip in the 
cohesive zone is obtained as 
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Figure 2. Stages of crack advancement towards a thin weld; 
(a) Stage I (Cohesive zone in parent body); (b) Stage II (Ex-
tension of cohesive zone into interface body). 
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   
  

    

(2) 

Stage I is valid till the cohesive zone lies in the parent 
body i.e. the distance of the crack tip from the interface, 
a, fulfills the condition, . a r

Refer Figure 2(b). The crack has grown ahead from 
Stage I such that a r . The cohesive zone has devel-
oped in interface body, B, with its extent up to distance, l, 
from the interface. Length of the cohesive zone, b, is 
equal to (a + l). Since, , the following ex-
pression is written for v(x) in Stage II under simultaneous 
action of different cohesive stresses 

A BE E E 

A  and B  in 
parent and interface bodies respectively with the help of 

quation (2) E      
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2.2. Crack Near Thick Weld (Refer Figure 3) for  v x  assume the following forms in Stages I, II and 

III in the case of thick weld:  Using similar principles as in thin weld, the expressions  
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Figure 3. Stages of crack advancement towards a thick weld; (a) Stage I (Cohesive zone in parent body); (b) Stage II (Spread 
of cohesive zone to weld); (c) Stage III (Extension of cohesive zone into interface body).      
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All the integrals, especially non-singular ones, in 

Equation (1) to Equation (6) need to be solved for ob-
taining a usable form of . )(xv

3. Solution 

Equations in important stages of crack growth towards 
the interface in bodies with thin and thick welds are 
solved as follows. 

3.1. Crack Near Thin Weld 

In Stage II, 
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                  (7) 
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Integral I1 is easily solved as 
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Integrals I2 and I3 are singular in nature and are evalu-
ated as follows:  
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Use of Cauchy’s principal value theorem [3] enables 
to write for 0 x a   and continuous b   as  
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in integral I2, one obtains 
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On defining 4b  C , one obtains 4 4d 2 dC C    Therefore 
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Integral I2 is finally written as 
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On re-substituting  and , one obtains 4C 5C
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Applying the limits of integration results in the following 
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Similarly, Integral I3 is written as 
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On applying the limits of integration, one obtains 
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Substitution of integrals I1, I2 and I3 in Equation (7) on 
using, b = a + l, results in closed form expression for 

load line displacement, v(x), in the cohesive zone spread 
across the interface of bodies A and B as 
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3.2. Crack Near Thick Weld  
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Substitution of integrals I1 to I4 in Equation (9) results 
in closed form expression for displacement, v(x), in the 

cohesive zone spread across parent body, A, weld, W and 
interface body, B, as 
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               
             
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       (10) 

 

4. Validation 

Solution of integrals is validated by once again reverting 
to Stages I and II of crack near thin weld. Refer Equation  
(2). In Stage I, solution of integral 

 
applied

0

d
2π

x K
x

r x



  is  applied

2

π
K r x . 

Lower limit is disregarded since value of applied  at 
upper limit acts over the specific location in the cohesive 
zone. Singular integral 

K

0 0

d
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π
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xr x
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





   

is evaluated as 
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which simplifies to 
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Crack tip opening displacement (CTOD), ) at x = 0,  (xv

i.e.,  is obtained as  0v applied

2 2 2

π π

Ar r
K

E

   
  

. On 

applying Dugdale’s cohesive zone criterion,  

2

appliedπ

8 A

K
r


 

  
 

,  reduces to (0)v
 2

applied

2 A

K

E
 

which is the well known solution for half crack tip open-
ing displacement in homogenous body A in linear elastic 
regime. 

In Stage II, J integral at crack tip, tipJ , expressed as 

 2

tipK

E
, is equal to  2 0Av  whereas J integral at in-  

terface, , is equal to interfaceJ    2 B A v a  . Since  

appliedJ  is given by 
 2

appliedK

E
, the following equation  

is obtained upon using conservation of energy release 
rate, applied tip interfaceJ J J   

 
     

2

applied
2 0 2A B A

K
v v a

E
          (11) 

Equation (8) leads to the following expressions 
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   (12) 

and 
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
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       (13) 

 
Stress intensity parameter applied over the crack with 

its cohesive zone split across the interface in Stage II [4] 
is written as  

 

   applied

2 2
2 2

π
A Ba l l

K   

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π

A                                     (14) 

 
With Equation (12) and Equation (13), R.H.S. of Equation (11) results in the expression  
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)
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which equals 
 2

appliedK

E
 i.e. L.H.S upon using Equa-

tion (14) that validates the solutions of singular integrals.  

5. Conclusion  

Singular integrals in mathematical model of load line 
opening of Mode I crack near the interface of elasticity 
identical but strength and plasticity mismatched materials 
in linear elastic regime are solved. The solution is well 
validated. 
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