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Abstract

In the paper the local density and the local weak density of topological spaces are investigated.

It is proved that for a π-irreducible mapping f of a topological space X onto a topological space

Y the followings hold: d(X) = d(Y ), wd(X) = wd(Y ), ld(X) ≤ ld(Y ), lwd(X) ≤ lwd(Y ).

Moreover, it is showed that the functor of probability measures of finite supports Pn, the functor

of the permutation degree SPnG and the functor expn preserve the cardinality of k-networks of

infinite compacts.

Keywords: π-irreducible mapping; k-network; the local density; the local weak density; hyperspace;
the space of the permutation degree.
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1 Introduction

Recall some definitions and propositions related to the work. Throughout this paper, all spaces are
assumed to be infinite and all mappings are continuous and onto.
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Definition 1.1. A subset M of a topological space X is dense in X if [M ] = X.

The density of a topological space is defined with following way: d(X) = min{|M | : M is dense
inX}. If d(X) ≤ ℵ0 for a space X we say that X is separable [1].

Definition 1.2. The weak density of a topological space X is the smallest cardinal number τ ≥ ℵ0
such that there is a π-base in X coinciding with τ centered systems of open sets, i.e. there is a
π-base B =

⋃
{Bα : α ∈ A}, where Bα is a centered system of open sets for each α ∈ A and

|A| = τ [2].

The weak density of a topological space X is denoted by wd(X). If wd (X) ≤ ℵ0 then we say
that a topological space X is weakly separable.

Definition 1.3. We say that a topological space X is locally τ -dense at a point x ∈ X if τ is the
smallest cardinal number such that x has a τ -dense neighborhood in X.

The local density at a point x is denoted by ld(x). The local density of a space X is defined
as the supremum of all numbers ld(x) for x ∈ X; this cardinal number is denoted by ld(X). If
ld(X) ≤ ℵ0 for a space X, we say that X is locally separable [3].

Definition 1.4. A topological space X is locally weakly τ dense at a point x ∈ X if τ is the
smallest cardinal number such that x has a neighborhood of weak density τ in X [4].

The weak density at a point x is denoted by lwd(x). The local weak density of a topological
space X is defined with following way: lwd (X) = sup {lwd (x) : x ∈ X} . If lwd(X) ≤ ℵ0 for a
space X, then we say that X is locally weakly separable [5].

2 Mappings Preserving the Local Density and the Local
Weak Density

Definition 2.1. A continuous mapping f : X → Y of a space X onto a space Y is irreducible if
f(A) 6= Y for any proper closed subset A of the space X [3].

Definition 2.2. Let f be a mapping of X onto Y . We say that the map f is π-irreducible if for
every proper closed subset F ⊂ X its image f(F ) is not dense in Y [6].

It is obvious that a closed map is π-irreducible iff it is irreducible.

Definition 2.3. A mapping f : X → Y is an almost open mapping, if for each y ∈ Y there exists
x ∈ f−1(y) such that f(U) is a neighborhood of y for each neighborhood U of x [7].

Definition 2.4. A mapping f : X → Y is called pseudo-open if for each y ∈ Y and each
neighborhood U of f−1(y) in X, f(U) is a neighborhood of y in Y [8].

Theorem 2.1. Let f be a continuous map of X onto Y . Then following statements are equivalent:

1) f is π-irreducible;
2) for every π-base β of X and for every B ∈ β the f-image of its compliment, f(X\B), is not

dense in Y ;
3) there is a π-base β of X such that for every B ∈ β the f-image f(X\B) is not dense in Y ;
4) for every π-base γ of Y the family {f−1(C) : C ∈ γ} is a π-base of X;
5) there is a π-base γ of Y such that the family {f−1(C) : C ∈ γ} is a π-base of X [6].
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Theorem 2.2. If d(X) ≤ τ and f : X → Y is a continuous mapping of X onto Y , then d(Y ) ≤ τ
[1].

Proposition 2.1. If d(X) ≤ τ and G is an arbitrary non-empty open subset of the space X, then
d(G) ≤ τ [3].

Theorem 2.3. Let f be a π-irreducible mapping of X onto Y . Then wd(X) = wd(Y ).

Proof. It is well known that the weak density is preserved under continuous mappings.
Therefore wd(Y ) ≤ wd(X). Let us now show wd(X) ≤ wd(Y ). Let wd(Y ) = τ . This means that
there is a π-base β = ∪{βα : α ∈ A} in Y , where |A| ≤ τ and βα = {Uαs : s ∈ Aα} is a centered
system of open sets in Y for every α ∈ A. Then it is clear that f−1(βα) = {f−1(Uαs ) : s ∈ Aα} is
a centered system of open sets in X. This implies that the system f−1(β) = ∪{f−1(βα) : α ∈ A}
coincides with τ centered systems of open sets. On the other hand, by theorem 2.1 f−1(β) is a
π-base in X. Therefore, we obtain wd(X) ≤ τ . Theorem 2.3 is proved.

Theorem 2.4. Let f be a π-irreducible mapping of X onto Y . Then d(X) = d(Y ).

Proof. It is clear that d(Y ) ≤ d(X). Now we shall show that d(X) ≤ d(Y ). Let d(Y ) = τ .
Then there is a dense subset M = {yα : α ∈ A} of Y such that A = τ . Let us choose a point xα
from each set f−1(yα) and form the set M1 = {xα : α ∈ A}. It is clear that |M1| = τ . Consider an
arbitrary nonempty proper open subset U ⊂ X. Then clearly X\U is a proper closed subset of X.
Since f is π-irreducible, we see that f(X\U) is not dense in Y . This implies that there is a nonempty
open set V ⊂ Y such that V ⊂ Y \f(X\U). Since M is dense in Y , we have yα ∈ M ∩ V for some
yα ∈ M . Then f−1(yα) ⊂ f−1(V ) ⊂ f−1(Y \f(X\U)) = X\f−1(f(X\U)) ⊂ X\(X\U) = U .
Hence xα ∈ f−1(yα) ⊂ U for some xα ∈ M1. This means that M1 is dense in X. Therefore
d(X) ≤ τ = d(Y ). Theorem 2.4 is proved.

Theorem 2.5. Let f be a π-irreducible mapping of X onto Y . Then ld(X) ≤ ld(Y ).

Proof. Let ld(Y ) = τ . Take an arbitrary point x ∈ X. Then f(x) = y ∈ Y . Since ld(Y ) = τ ,
there is a neighborhood Oy of y in Y such that d (Oy) ≤ τ . Note that f−1(Oy) is an open
neighborhood of x. Let M = {yα : α ∈ A} be a dense subset of Oy with |A| ≤ τ . Let us choose
a point xα from each set f−1(yα) and form the set M1 = {xα : α ∈ A}. It is clear that |M1| ≤ τ .
We shall show that M1 is dense in f−1(Oy). Consider an arbitrary nonempty open subset G of
f−1(Oy). G is open in X as an open subset of the open subspace f−1(Oy). Since f is π-irreducible,
f(X\G) is not dense in Y . Then there is a nonempty open set V in Y such that V ∩ f(X\G) = ∅.
Hence f−1(V )∩ f−1(f(X\G)) = ∅ and, a fortiori, f−1(V )∩ (X\G) = ∅. This implies f−1(V ) ⊂ G
and we have V ⊂ f(G) ⊂ Oy. On the other hand, yα ∈ V for some yα ∈M , since M is dense in Oy.
Therefore xα ∈ f−1(yα) ⊂ f−1(V ) ⊂ G for xα ∈ M1. This means that M1 is dense in f−1(Oy).
This implies ld(x) ≤ τ . We have chosen the point x arbitrarily, therefore ld(X) ≤ τ . Theorem 2.5
is proved.

Theorem 2.6. Let f be a π-irreducible mapping of X onto Y . Then lwd(X) ≤ lwd(Y ).

Proof. Let lwd(Y ) = τ . Take an arbitrary point x ∈ X, then f(x) ∈ Y . Since lwd(Y ) = τ ,
there exists a neighborhood Of(x) of the point f(x) in Y such that wd(Of(x)) ≤ τ . This means that
there is a π-base β = ∪{βα : α ∈ A} in Of(x), where |A| ≤ τ and βα = {Uαs : s ∈ Aα} is a centered
system of open sets in Of(x) for every α ∈ A. Then it is clear that f−1(βα) = {f−1(Uαs ) : s ∈ Aα}
is a centered system of open sets in the neighborhood f−1(Of(x)) of x. This implies that the system
f−1(β) = ∪{f−1(βα) : α ∈ A} coincides with τ centered systems of open sets in f−1(Of(x)). For
completing the proof of the theorem it is sufficient to show that f−1(β) is a π-base in f−1(Of(x)).
Let G be a nonempty open subset of f−1(Of(x)). Since f is π-irreducible, the set f(X\G) is not
dense in Y . Then there is a nonempty open subset V of the space Y such that V ∩f(X\G) = ∅. As
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it was noticed in the proof of theorem 2.3, we have V ⊂ f(G) ⊂ Of(x). Since β is a π-base in Of(x),
we have Uαs ⊂ V for some Uαs ∈ β. This implies f−1(Uαs ) ⊂ f−1(V ) ⊂ G for f−1(Uαs ) ∈ f−1(β).
This means that f−1(β) is a π-base in f−1(Of(x)). Theorem 2.6 is proved.

Theorem 2.7. Let f be an almost open mapping of X onto Y . Then 1) ld(Y ) ≤ ld(X); 2)
lwd(Y ) ≤ lwd(X).

Proof. 1) Let ld(X) = τ . For every y ∈ Y there is x ∈ f−1(y) such that f(U) is a neighborhood
of y in Y for an arbitrary neighborhood U of x. Since ld(X) = τ , there is a neighborhood Ox of
x such that d(Ox) ≤ τ . By theorem 2.2 we have d(f(Ox)) ≤ τ . On the other hand, f(Ox) is a
neighborhood of y in Y . So, we have found a neighborhood of density τ for arbitrarily taken point
y. This implies ld(Y ) ≤ τ . 1) is proved. The proof of 2) is the same as the proof of 1). Therefore,
we omit it. Theorem 2.7 is proved.

Theorem 2.8. Let f : X → Y be a pseudo-open compact mapping. Then 1) ld(Y ) ≤ ld(X); 1)
lwd(Y ) ≤ lwd(X).

Proof. 1) We shall prove ld(Y ) ≤ ld(X). Let ld(X) = τ . Let us take an arbitrary point
y ∈ Y . Then the set f−1(y) ⊂ X is compact in X. For every point x ∈ f−1(y) there exists a
neighborhood Ox of x such that d(Ox) ≤ τ . The family of all these neighborhoods covers the set
f−1(y). Since f−1(y) is compact, there is a finite sequence Ox1, Ox2, ..., Oxn of open sets such

that f−1(y) ⊂
n⋃
i=1

Oxi and d(Oxi) ≤ τ for each i = 1, 2, ..., n. Put G =
n⋃
i=1

Oxi. Then we obtain

d(G) ≤ τ . Since f is pseudo-open and f−1(y) ⊂ G, we see that y ∈ int(f(G)) = Oy. Then by
theorem 2.2 and proposition 2.1 we have d(Oy) ≤ τ . We have found the neighborhood Oy of density
≤ τ for arbitrarily chosen point y ∈ Y . Therefore ld(Y ) ≤ τ . The inequality ld(Y ) ≤ ld(X) is
proved. The proof of the inequality lwd(Y ) ≤ lwd(X) is the same as the proof of 1), therefore we
omit it. Theorem 2.8 is proved.

3 k-Networks of Infinite Compacts

Let X be a T1-space. The collection of all nonempty closed subsets of X we denote by expX.

The family B of all sets in the form O〈U1, ..., Un〉 =
{
F : F ∈ expX, F ⊂

n
∪
i=1

Ui, F ∩ Ui 6= ∅,
i = 1, 2, ..., n , where U1, ..., Un is a sequence of open sets of X, generates the topology on the set
expX. This topology is called the Vietoris topology. The expX with the Vietoris topology is called
the exponential space or the hyperspace of X [1].

Denote by expnX the set of all closed subsets of X cardinality of that is not greater than the
cardinal number n, i.e. expnX = {F ∈ expX : |F | ≤ n }.

Let X be a compact space. By C(X) denote the set of all continuous maps φ : X → R with the usual
sup-norm ‖φ‖ = sup{|φ(x)| : x ∈ X}. A continuous functional µ : C(X) → R is called a measure
on the compact X. A measure is positive (notation µ ≥ 0), if µ(φ) ≥ 0 for any φ ≥ 0. A measure is
normed, if ‖µ‖ = 1. A positive normed measure is called a probability measure. A space consisting
of all probability measures, is denoted by P (X). A neighborhood base at a point µ ∈ P (X) consists
of all the sets in the form O(µ;φ1, φ2, ..., φk; ε) = {ν ∈ P (X) : |µ(φi)− ν(φi)| < ε, i = 1, 2, ..., k}
where φ1, φ2, ..., φk ∈ C(X) and ε > 0.

A support supp(µ) of a measure µ ∈ P (X) is the smallest closed subset F ⊂ X such that µ(F ) =
µ(X). For a compact X and a natural number n put Pn(X) = {µ ∈ P (X) : |supp(µ)| ≤ n} and
Pω(X) = ∪{Pn(X) : n = 1, 2, ...}. It is easy to see that Pω(X) is dense in P (X) [1].

A permutation group X is the group of all permutations (i.e. one-one and onto mappings X → X).
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A permutation group of a set X is usually denoted by S (X). If X = {1, 2, . . ., n}, S (X) is denoted
by Sn, as well [9].

Let Xn be the n th power of a compact X. The permutation group Sn of all permutations, acts on
the n th power Xn as permutation of coordinates. The set of all orbits of this action with quotient
topology we denote by SPnX. Thus, points of the space SPnX are finite subsets (equivalence
classes) of the product Xn. Thus two points (x1, x2, . . . , xn) , (y1, y2, . . . , yn) ∈ Xn are considered
to be equivalent if there is a permutation σ ∈ Sn such that yi = xσ(i). The space SPnX is
called the n-permutation degree of a spaces X [9]. Equivalence relations by which we obtained
spaces SPnX and expnX, are called the symmetric and hypersymmetric equivalence relations,
respectively. Any symmetrically equivalent points of Xn are hypersymmetrically equivalent. But
the inverse is not correct. So, points (x, x, y) , (x, y, y) ∈ X3 are hypersimmetrically equivalent,
but not symmetrically equivalent.

The concept of a permutation degree has generalizations. Let G be any subgroup of the group
Sn. Then it also acts on Xn as group of permutations of coordinates. Consequently, it generates
a G-symmetric equivalence relation on Xn. The quotient space of the product Xn under the G -
symmetric equivalence relation, is called G-permutation degree of the space X and is denoted by
SPnGX. An operation SPnG is also the covariant functor in the category of compacts and is said to
be a functor of G-permutation degree. If G = Sn then SPnG = SPn. If the group G consists only of
unique element then SPnGX = Xn . Moreover, if G1 ⊂ G2 for subgroups G1, G2 of the permutation
group Sn then we get a sequence of the factorization of functors:

Xn → SPnG1
→ SPnG2

→ SPn → expn (3.1)

Definition 3.1. Let P be a family of subsets of a space X and τ (X) is the topology on X. P is
called a k - network if whenever K is a compact subset of X and K ⊂ U ∈ τ (X), there is a finite

subfamily P
′
⊂ P such that K ⊂

⋃
P

′
⊂ U [10].

Theorem 3.1. If f : X → Y is a perfect mapping, then for every compact subspace Z ⊂ Y its
inverse image f−1 (Z) is compact [6].

Proposition 3.1. Let f : X → Y be a perfect mapping of a topological space X onto a topological
space Y . If X has a k-network of cardinality τ ≥ ℵ0, then Y has a k-network of cardinality ≤ τ .

Proof. Let f : X → Y be a perfect onto map and let P = {Eα : α ∈ A} be a k- network
of cardinality τ ≥ ℵ0 in X. Let us show that the family f (P ) = P1 = {f (Eα) : α ∈ A} is a k -
network of cardinality τ for Y . It is clear that |P1| ≤ τ . Let K be an arbitrary compact subspace of
Y and let U be an arbitrary neighborhood of K. Then f−1 (U) is an open set in X, containing the

compact f−1 (K). Since f−1 (K) is compact, there is a finite subfamily P
′

= {Eα1 , Eα2 , . . ., Eαn}

of such that f−1 (K) ⊆
n⋃
i=1

Eαi ⊆ f−1 (U). According to the equality f(
⋃
{Eα : i = 1, 2, ..., n}) =⋃

{f(Eα), i = 1, 2, ..., n} we see that K ⊂
n⋃
i=1

f (Eαi) ⊂ U . Proposition 3.1 is proved.

Proposition 3.2. Suppose that topological spaces X and Y have k-networks of cardinality τ ≥ ℵ0,
then their product X × Y has a k-network of cardinality ≤ τ .

Proof. Let P1 = {Eα : α ∈ A} and P1 = {Mβ : β ∈ B} be k-networks in X and Y ,
respectively. We show that P1 × P2 = {Eα ×Mβ : α ∈ A, β ∈ B} is a k-network of cardinality
≤ τ in X×Y . Let K ⊂ X×Y be an arbitrary compact and let G - be its arbitrary neighborhood in
X × Y . Then π1(K) = K1 and π2(K) = K2 are compacts in X and Y , respectively. Furthermore,
π1(G) = G1 and π2(G) = G2 are neighborhoods of compacts K1 and K2, respectively. Since
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P1 and P2 are k-networks in X and Y , respectively, there exist elements Eα1 , Eα2 , . . ., Eαn ∈

P1, Mα1 , Mα2 , . . ., Mαn ∈ P2 , such that K1 ⊂
k⋃
i=1

Eαi ⊂ G1 and K2 ⊂
s⋃
j=1

Eαj ⊂ G2 in X and Y ,

respectively. Then K1 ⊂
k, s⋃
i, =1

Eαi ×Mβj ⊂ G. Therefore, P1 ×P2 is a k-network cardinality ≤ τ in

X × Y . Proposition 3.2 is proved.

Corollary 3.2. If P = {Eα : α ∈ A} is a k-network of cardinality τ ≥ ℵ0 in X, then Pn =
{Eα1 × Eα2× . . .× Eαn : Eαi ∈ P, i = 1, 2, . . ., n} is a k-network of cardinality ≤ τ in Xn.

Corollary 3.3. Suppose that topological space X have k-network of cardinality τ ≥ ℵ0, then the
space Xn has a k-network of cardinality ≥ τ .

Theorem 3.4. Let X be an infinite compact T2-space with a k-network of cardinality τ ≥ ℵ0 and
G be an arbitrary subgroup of the group Sn. If G1 and G2 are subgroups of the permutation group
Sn that G1 ⊂ G2, then spaces

∏n (X), SPnG1
(X) , SPnG2

(X) , SPn (X) , expnX, Pn (X) have a
k-network of cardinality ≤ τ .

Proof. Let X be an infinite compact T2-space with a k-network of cardinality τ ≥ ℵ0. Then
by corollary 3.1, the compact Xn has a k-network of cardinality ≤ τ. It is known that SPn(X) is a
quotient space of Xn. Since a quotient mapping is ”onto”, by proposition 3.1 and equalities (3.1),
we see that each of the spaces SPnG1

(X), SPnG2
(X), SPn(X), expnX has a k-network of cardinality

≤ τ.

In [11] it is shown that Pn(X) can be represented as a continuous image of the space X × σn−1,
where σn−1 is the (n-1)-dimensional simplex. The mapping π : X × σn−1 → Pn(X) is defined with

the formula π(x1, ..., xn,m1, ...,mn) =
n∑
i=1

miδxi , where (m1, ...mn) ∈ σn−1,
n∑
i=1

mi = 1 and mi ≥ 0

for each i ∈ N , δxi is Dirak’s measure at point xi, respectively. The mapping π is perfect, since π
is continuous mapping defined on compact X × σn−1. Therefore, by proposition 3.1, we see that
the space Pn(X) has a k-network of cardinality ≤ τ. Theorem 3.4 is proved.

Corollary 3.5. Functors
∏n, SPnG1

, SPnG2
, SPn, expn, Pn preserve k-network of infinite compacts.

4 Conclusions

In the paper k-networks, the density, the weak density, the local density and the local weak density
of topological spaces are investigated. In section 2 it is proved that π-irreducible mappings preserve
the density and the weak density. Besides, it is shown that the local density (the local weak
density) of the inverse image of a topological space under π-irreducible mapping is not greater
than the local density (respectively, the local weak density) of the space. In section 3 k-networks
of infinite compacts are considered. The main result in section 3 is that functors finite product,
the permutation group, exponential functor and the functor of probability measures preserve the
cardinality of k-networks for infinite compacts.
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