

British Journal of Mathematics & Computer Science 10(5): 1-7, 2015, Article no.BJMCS.19311

ISSN: 2231-0851

SCIENCEDOMAIN international www.sciencedomain.org



# $\pi$ -Irreducible Mappings and K-Network of Infinite Compacts

R. B. Beshimov<sup>1\*</sup>, N. K. Mamadaliev<sup>2</sup> and F. G. Mukhamadiev<sup>1</sup>

<sup>1</sup>Department of Mathematics, Tashkent State Pedagogical University, Named After Nizami Str. Yusuf Khos Hojib 103, 100070 Tashkent, Uzbekistan. <sup>2</sup>Institute of Mathematics, National University of Uzbekistan, Named After Mirzo Ulugbek Durmon Yuli Str. 29, 100125 Tashkent, Uzbekistan.

#### Article Information

DOI: 10.9734/BJMCS/2015/19311 <u>Editor(s)</u>: (1) Y. L. Lio, Department of Mathematical Sciences, University of South Dakota, USA. <u>Reviewers</u>: (1) Anonymous, Tecnolgico de Estudios Superiores de Chalco, Mexico. (2) Anonymous, SASTRA University, India. (3) Anonymous, Dzce University, Turkey. Complete Peer review History: http://sciencedomain.org/review-history/10329

**Original Research Article** 

Received: 02 June 2015 Accepted: 07 July 2015 Published: 26 July 2015

## Abstract

In the paper the local density and the local weak density of topological spaces are investigated. It is proved that for a  $\pi$ -irreducible mapping f of a topological space X onto a topological space Y the followings hold:  $d(X) = d(Y), wd(X) = wd(Y), ld(X) \leq ld(Y), lwd(X) \leq lwd(Y)$ . Moreover, it is showed that the functor of probability measures of finite supports  $P_n$ , the functor of the permutation degree  $SP_G^n$  and the functor  $\exp_n$  preserve the cardinality of k-networks of infinite compacts.

Keywords:  $\pi$ -irreducible mapping; k-network; the local density; the local weak density; hyperspace; the space of the permutation degree.

2010 Mathematics Subject Classification: 54B20, 54A25.

# 1 Introduction

Recall some definitions and propositions related to the work. Throughout this paper, all spaces are assumed to be infinite and all mappings are continuous and onto.

<sup>\*</sup>Corresponding author: E-mail: rbeshimov@mail.ru

**Definition 1.1.** A subset M of a topological space X is dense in X if [M] = X.

The density of a topological space is defined with following way:  $d(X) = \min\{|M| : M \text{ is dense } in X\}$ . If  $d(X) \leq \aleph_0$  for a space X we say that X is separable [1].

**Definition 1.2.** The weak density of a topological space X is the smallest cardinal number  $\tau \geq \aleph_0$ such that there is a  $\pi$ -base in X coinciding with  $\tau$  centered systems of open sets, i.e. there is a  $\pi$ -base  $B = \bigcup \{B_{\alpha} : \alpha \in A\}$ , where  $B_{\alpha}$  is a centered system of open sets for each  $\alpha \in A$  and  $|A| = \tau$  [2].

The weak density of a topological space X is denoted by wd(X). If  $wd(X) \leq \aleph_0$  then we say that a topological space X is weakly separable.

**Definition 1.3.** We say that a topological space X is locally  $\tau$ -dense at a point  $x \in X$  if  $\tau$  is the smallest cardinal number such that x has a  $\tau$ -dense neighborhood in X.

The local density at a point x is denoted by ld(x). The local density of a space X is defined as the supremum of all numbers ld(x) for  $x \in X$ ; this cardinal number is denoted by ld(X). If  $ld(X) \leq \aleph_0$  for a space X, we say that X is locally separable [3].

**Definition 1.4.** A topological space X is locally weakly  $\tau$  dense at a point  $x \in X$  if  $\tau$  is the smallest cardinal number such that x has a neighborhood of weak density  $\tau$  in X [4].

The weak density at a point x is denoted by lwd(x). The local weak density of a topological space X is defined with following way:  $lwd(X) = \sup \{lwd(x) : x \in X\}$ . If  $lwd(X) \leq \aleph_0$  for a space X, then we say that X is locally weakly separable [5].

## 2 Mappings Preserving the Local Density and the Local Weak Density

**Definition 2.1.** A continuous mapping  $f : X \to Y$  of a space X onto a space Y is irreducible if  $f(A) \neq Y$  for any proper closed subset A of the space X [3].

**Definition 2.2.** Let f be a mapping of X onto Y. We say that the map f is  $\pi$ -irreducible if for every proper closed subset  $F \subset X$  its image f(F) is not dense in Y [6].

It is obvious that a closed map is  $\pi$ -irreducible iff it is irreducible.

**Definition 2.3.** A mapping  $f: X \to Y$  is an almost open mapping, if for each  $y \in Y$  there exists  $x \in f^{-1}(y)$  such that f(U) is a neighborhood of y for each neighborhood U of x [7].

**Definition 2.4.** A mapping  $f : X \to Y$  is called pseudo-open if for each  $y \in Y$  and each neighborhood U of  $f^{-1}(y)$  in X, f(U) is a neighborhood of y in Y [8].

**Theorem 2.1.** Let f be a continuous map of X onto Y. Then following statements are equivalent:

1) f is  $\pi$ -irreducible;

2) for every  $\pi$ -base  $\beta$  of X and for every  $B \in \beta$  the f-image of its compliment,  $f(X \setminus B)$ , is not dense in Y;

3) there is a  $\pi$ -base  $\beta$  of X such that for every  $B \in \beta$  the f-image  $f(X \setminus B)$  is not dense in Y;

4) for every  $\pi$ -base  $\gamma$  of Y the family  $\{f^{-1}(C) : C \in \gamma\}$  is a  $\pi$ -base of X;

5) there is a  $\pi$ -base  $\gamma$  of Y such that the family  $\{f^{-1}(C) : C \in \gamma\}$  is a  $\pi$ -base of X [6].

**Theorem 2.2.** If  $d(X) \leq \tau$  and  $f: X \to Y$  is a continuous mapping of X onto Y, then  $d(Y) \leq \tau$  [1].

**Proposition 2.1.** If  $d(X) \leq \tau$  and G is an arbitrary non-empty open subset of the space X, then  $d(G) \leq \tau$  [3].

**Theorem 2.3.** Let f be a  $\pi$ -irreducible mapping of X onto Y. Then wd(X) = wd(Y).

**Proof.** It is well known that the weak density is preserved under continuous mappings. Therefore  $wd(Y) \leq wd(X)$ . Let us now show  $wd(X) \leq wd(Y)$ . Let  $wd(Y) = \tau$ . This means that there is a  $\pi$ -base  $\beta = \bigcup \{\beta_{\alpha} : \alpha \in A\}$  in Y, where  $|A| \leq \tau$  and  $\beta_{\alpha} = \{U_s^{\alpha} : s \in A_{\alpha}\}$  is a centered system of open sets in Y for every  $\alpha \in A$ . Then it is clear that  $f^{-1}(\beta_{\alpha}) = \{f^{-1}(U_s^{\alpha}) : s \in A_{\alpha}\}$  is a centered system of open sets in X. This implies that the system  $f^{-1}(\beta) = \bigcup \{f^{-1}(\beta_{\alpha}) : \alpha \in A\}$ coincides with  $\tau$  centered systems of open sets. On the other hand, by theorem 2.1  $f^{-1}(\beta)$  is a  $\pi$ -base in X. Therefore, we obtain  $wd(X) \leq \tau$ . Theorem 2.3 is proved.

**Theorem 2.4.** Let f be a  $\pi$ -irreducible mapping of X onto Y. Then d(X) = d(Y).

**Proof.** It is clear that  $d(Y) \leq d(X)$ . Now we shall show that  $d(X) \leq d(Y)$ . Let  $d(Y) = \tau$ . Then there is a dense subset  $M = \{y_{\alpha} : \alpha \in A\}$  of Y such that  $\overline{A} = \tau$ . Let us choose a point  $x_{\alpha}$  from each set  $f^{-1}(y_{\alpha})$  and form the set  $M_1 = \{x_{\alpha} : \alpha \in A\}$ . It is clear that  $|M_1| = \tau$ . Consider an arbitrary nonempty proper open subset  $U \subset X$ . Then clearly  $X \setminus U$  is a proper closed subset of X. Since f is  $\pi$ -irreducible, we see that  $f(X \setminus U)$  is not dense in Y. This implies that there is a nonempty open set  $V \subset Y$  such that  $V \subset Y \setminus f(X \setminus U)$ . Since M is dense in Y, we have  $y_{\alpha} \in M \cap V$  for some  $y_{\alpha} \in M$ . Then  $f^{-1}(y_{\alpha}) \subset f^{-1}(V) \subset f^{-1}(Y \setminus f(X \setminus U)) = X \setminus f^{-1}(f(X \setminus U)) \subset X \setminus (X \setminus U) = U$ . Hence  $x_{\alpha} \in f^{-1}(y_{\alpha}) \subset U$  for some  $x_{\alpha} \in M_1$ . This means that  $M_1$  is dense in X. Therefore  $d(X) \leq \tau = d(Y)$ . Theorem 2.4 is proved.

**Theorem 2.5.** Let f be a  $\pi$ -irreducible mapping of X onto Y. Then  $ld(X) \leq ld(Y)$ .

**Proof.** Let  $ld(Y) = \tau$ . Take an arbitrary point  $x \in X$ . Then  $f(x) = y \in Y$ . Since  $ld(Y) = \tau$ , there is a neighborhood Oy of y in Y such that  $d(O_y) \leq \tau$ . Note that  $f^{-1}(Oy)$  is an open neighborhood of x. Let  $M = \{y_\alpha : \alpha \in A\}$  be a dense subset of Oy with  $|A| \leq \tau$ . Let us choose a point  $x_\alpha$  from each set  $f^{-1}(y_\alpha)$  and form the set  $M_1 = \{x_\alpha : \alpha \in A\}$ . It is clear that  $|M_1| \leq \tau$ . We shall show that  $M_1$  is dense in  $f^{-1}(Oy)$ . Consider an arbitrary nonempty open subset G of  $f^{-1}(Oy)$ . G is open in X as an open subset of the open subspace  $f^{-1}(Oy)$ . Since f is  $\pi$ -irreducible,  $f(X \setminus G)$  is not dense in Y. Then there is a nonempty open set V in Y such that  $V \cap f(X \setminus G) = \emptyset$ . Hence  $f^{-1}(V) \cap f^{-1}(f(X \setminus G)) = \emptyset$  and, a fortiori,  $f^{-1}(V) \cap (X \setminus G) = \emptyset$ . This implies  $f^{-1}(V) \subset G$ and we have  $V \subset f(G) \subset Oy$ . On the other hand,  $y_\alpha \in V$  for some  $y_\alpha \in M$ , since M is dense in Oy. Therefore  $x_\alpha \in f^{-1}(y_\alpha) \subset f^{-1}(V) \subset G$  for  $x_\alpha \in M_1$ . This means that  $M_1$  is dense in  $f^{-1}(Oy)$ . This implies  $ld(x) \leq \tau$ . We have chosen the point x arbitrarily, therefore  $ld(X) \leq \tau$ . Theorem 2.5 is proved.

**Theorem 2.6.** Let f be a  $\pi$ -irreducible mapping of X onto Y. Then  $lwd(X) \leq lwd(Y)$ .

**Proof.** Let  $lwd(Y) = \tau$ . Take an arbitrary point  $x \in X$ , then  $f(x) \in Y$ . Since  $lwd(Y) = \tau$ , there exists a neighborhood Of(x) of the point f(x) in Y such that  $wd(Of(x)) \leq \tau$ . This means that there is a  $\pi$ -base  $\beta = \bigcup \{\beta_{\alpha} : \alpha \in A\}$  in Of(x), where  $|A| \leq \tau$  and  $\beta_{\alpha} = \{U_s^{\alpha} : s \in A_{\alpha}\}$  is a centered system of open sets in Of(x) for every  $\alpha \in A$ . Then it is clear that  $f^{-1}(\beta_{\alpha}) = \{f^{-1}(U_s^{\alpha}) : s \in A_{\alpha}\}$ is a centered system of open sets in the neighborhood  $f^{-1}(Of(x))$  of x. This implies that the system  $f^{-1}(\beta) = \bigcup \{f^{-1}(\beta_{\alpha}) : \alpha \in A\}$  coincides with  $\tau$  centered systems of open sets in  $f^{-1}(Of(x))$ . For completing the proof of the theorem it is sufficient to show that  $f^{-1}(\beta)$  is a  $\pi$ -base in  $f^{-1}(Of(x))$ . Let G be a nonempty open subset of  $f^{-1}(Of(x))$ . Since f is  $\pi$ -irreducible, the set  $f(X \setminus G)$  is not dense in Y. Then there is a nonempty open subset V of the space Y such that  $V \cap f(X \setminus G) = \emptyset$ . As it was noticed in the proof of theorem 2.3, we have  $V \subset f(G) \subset Of(x)$ . Since  $\beta$  is a  $\pi$ -base in Of(x), we have  $U_s^{\alpha} \subset V$  for some  $U_s^{\alpha} \in \beta$ . This implies  $f^{-1}(U_s^{\alpha}) \subset f^{-1}(V) \subset G$  for  $f^{-1}(U_s^{\alpha}) \in f^{-1}(\beta)$ . This means that  $f^{-1}(\beta)$  is a  $\pi$ -base in  $f^{-1}(Of(x))$ . Theorem 2.6 is proved.

**Theorem 2.7.** Let f be an almost open mapping of X onto Y. Then 1)  $ld(Y) \leq ld(X)$ ; 2)  $lwd(Y) \leq lwd(X)$ .

**Proof.** 1) Let  $ld(X) = \tau$ . For every  $y \in Y$  there is  $x \in f^{-1}(y)$  such that f(U) is a neighborhood of y in Y for an arbitrary neighborhood U of x. Since  $ld(X) = \tau$ , there is a neighborhood Ox of x such that  $d(Ox) \leq \tau$ . By theorem 2.2 we have  $d(f(Ox)) \leq \tau$ . On the other hand, f(Ox) is a neighborhood of y in Y. So, we have found a neighborhood of density  $\tau$  for arbitrarily taken point y. This implies  $ld(Y) \leq \tau$ . 1) is proved. The proof of 2) is the same as the proof of 1). Therefore, we omit it. Theorem 2.7 is proved.

**Theorem 2.8.** Let  $f : X \to Y$  be a pseudo-open compact mapping. Then 1)  $ld(Y) \leq ld(X)$ ; 1)  $lwd(Y) \leq lwd(X)$ .

**Proof.** 1) We shall prove  $ld(Y) \leq ld(X)$ . Let  $ld(X) = \tau$ . Let us take an arbitrary point  $y \in Y$ . Then the set  $f^{-1}(y) \subset X$  is compact in X. For every point  $x \in f^{-1}(y)$  there exists a neighborhood Ox of x such that  $d(Ox) \leq \tau$ . The family of all these neighborhoods covers the set  $f^{-1}(y)$ . Since  $f^{-1}(y)$  is compact, there is a finite sequence  $Ox_1, Ox_2, ..., Ox_n$  of open sets such that  $f^{-1}(y) \subset \bigcup_{i=1}^n Ox_i$  and  $d(Ox_i) \leq \tau$  for each i = 1, 2, ..., n. Put  $G = \bigcup_{i=1}^n Ox_i$ . Then we obtain  $d(G) \leq \tau$ . Since f is pseudo-open and  $f^{-1}(y) \subset G$ , we see that  $y \in int(f(G)) = Oy$ . Then by theorem 2.2 and proposition 2.1 we have  $d(Oy) \leq \tau$ . We have found the neighborhood Oy of density  $\leq \tau$  for arbitrarily chosen point  $y \in Y$ . Therefore  $ld(Y) \leq \tau$ . The inequality  $ld(Y) \leq ld(X)$  is proved. The proof of the inequality  $lwd(Y) \leq lwd(X)$  is the same as the proof of 1), therefore we omit it. Theorem 2.8 is proved.

#### **3** *k*-Networks of Infinite Compacts

Let X be a  $T_1$ -space. The collection of all nonempty closed subsets of X we denote by  $\exp X$ . The family B of all sets in the form  $O\langle U_1, ..., U_n \rangle = \begin{cases} F : F \in \exp X, F \subset \bigcup_{i=1}^n U_i, F \cap U_i \neq \emptyset, i = 1, 2, ..., n, where <math>U_1, ..., U_n$  is a sequence of open sets of X, generates the topology on the set  $\exp X$ . This topology is called the Vietoris topology. The  $\exp X$  with the Vietoris topology is called the vietoris topology. The exp X with the Vietoris topology is called the exponential space or the hyperspace of X [1].

Denote by  $\exp_n X$  the set of all closed subsets of X cardinality of that is not greater than the cardinal number n, i.e.  $\exp_n X = \{F \in \exp X : |F| \le n\}.$ 

Let X be a compact space. By C(X) denote the set of all continuous maps  $\phi: X \to R$  with the usual sup-norm  $\|\phi\| = \sup\{|\phi(x)| : x \in X\}$ . A continuous functional  $\mu: C(X) \to R$  is called a measure on the compact X. A measure is positive (notation  $\mu \ge 0$ ), if  $\mu(\phi) \ge 0$  for any  $\phi \ge 0$ . A measure is normed, if  $\|\mu\| = 1$ . A positive normed measure is called a probability measure. A space consisting of all probability measures, is denoted by P(X). A neighborhood base at a point  $\mu \in P(X)$  consists of all the sets in the form  $O(\mu; \phi_1, \phi_2, ..., \phi_k; \varepsilon) = \{\nu \in P(X) : |\mu(\phi_i) - \nu(\phi_i)| < \varepsilon, i = 1, 2, ..., k\}$  where  $\phi_1, \phi_2, ..., \phi_k \in C(X)$  and  $\varepsilon > 0$ .

A support  $\operatorname{supp}(\mu)$  of a measure  $\mu \in P(X)$  is the smallest closed subset  $F \subset X$  such that  $\mu(F) = \mu(X)$ . For a compact X and a natural number n put  $P_n(X) = \{\mu \in P(X) : |\operatorname{supp}(\mu)| \le n\}$  and  $P_{\omega}(X) = \bigcup\{P_n(X) : n = 1, 2, \ldots\}$ . It is easy to see that  $P_{\omega}(X)$  is dense in P(X) [1].

A permutation group X is the group of all permutations (i.e. one-one and onto mappings  $X \to X$ ).

A permutation group of a set X is usually denoted by S(X). If  $X = \{1, 2, ..., n\}$ , S(X) is denoted by  $S_n$ , as well [9].

Let  $X^n$  be the *n* th power of a compact *X*. The permutation group  $S_n$  of all permutations, acts on the *n* th power  $X^n$  as permutation of coordinates. The set of all orbits of this action with quotient topology we denote by  $SP^nX$ . Thus, points of the space  $SP^nX$  are finite subsets (equivalence classes) of the product  $X^n$ . Thus two points  $(x_1, x_2, \ldots, x_n)$ ,  $(y_1, y_2, \ldots, y_n) \in X^n$  are considered to be equivalent if there is a permutation  $\sigma \in S_n$  such that  $y_i = x_{\sigma(i)}$ . The space  $SP^nX$  is called the *n*-permutation degree of a spaces X [9]. Equivalence relations by which we obtained spaces  $SP^nX$  and  $\exp_nX$ , are called the symmetric and hypersymmetric equivalence relations, respectively. Any symmetrically equivalent points of  $X^n$  are hypersymmetrically equivalent. But the inverse is not correct. So, points (x, x, y),  $(x, y, y) \in X^3$  are hypersimmetrically equivalent, but not symmetrically equivalent.

The concept of a permutation degree has generalizations. Let G be any subgroup of the group  $S_n$ . Then it also acts on  $X^n$  as group of permutations of coordinates. Consequently, it generates a G-symmetric equivalence relation on  $X^n$ . The quotient space of the product  $X^n$  under the G-symmetric equivalence relation, is called G-permutation degree of the space X and is denoted by  $SP_G^n X$ . An operation  $SP_G^n$  is also the covariant functor in the category of compacts and is said to be a functor of G-permutation degree. If  $G = S_n$  then  $SP_G^n = SP^n$ . If the group G consists only of unique element then  $SP_G^n X = X^n$ . Moreover, if  $G_1 \subset G_2$  for subgroups  $G_1$ ,  $G_2$  of the permutation group  $S_n$  then we get a sequence of the factorization of functors:

$$X^n \to SP^n_{G_1} \to SP^n_{G_2} \to SP^n \to \exp_n$$
 (3.1)

**Definition 3.1.** Let P be a family of subsets of a space X and  $\tau(X)$  is the topology on X. P is called a k - network if whenever K is a compact subset of X and  $K \subset U \in \tau(X)$ , there is a finite subfamily  $P' \subset P$  such that  $K \subset \bigcup P' \subset U$  [10].

**Theorem 3.1.** If  $f : X \to Y$  is a perfect mapping, then for every compact subspace  $Z \subset Y$  its inverse image  $f^{-1}(Z)$  is compact [6].

**Proposition 3.1.** Let  $f : X \to Y$  be a perfect mapping of a topological space X onto a topological space Y. If X has a k-network of cardinality  $\tau \ge \aleph_0$ , then Y has a k-network of cardinality  $\le \tau$ .

**Proof.** Let  $f: X \to Y$  be a perfect onto map and let  $P = \{E_{\alpha} : \alpha \in A\}$  be a k- network of cardinality  $\tau \geq \aleph_0$  in X. Let us show that the family  $f(P) = P_1 = \{f(E_{\alpha}) : \alpha \in A\}$  is a knetwork of cardinality  $\tau$  for Y. It is clear that  $|P_1| \leq \tau$ . Let K be an arbitrary compact subspace of Y and let U be an arbitrary neighborhood of K. Then  $f^{-1}(U)$  is an open set in X, containing the compact  $f^{-1}(K)$ . Since  $f^{-1}(K)$  is compact, there is a finite subfamily  $P' = \{E_{\alpha_1}, E_{\alpha_2}, \ldots, E_{\alpha_n}\}$ of such that  $f^{-1}(K) \subseteq \bigcup_{i=1}^n E_{\alpha_i} \subseteq f^{-1}(U)$ . According to the equality  $f(\bigcup \{E_{\alpha} : i = 1, 2, ..., n\}) =$  $\bigcup \{f(E_{\alpha}), i = 1, 2, ..., n\}$  we see that  $K \subset \bigcup_{i=1}^n f(E_{\alpha_i}) \subset U$ . Proposition 3.1 is proved.

i=1

**Proposition 3.2.** Suppose that topological spaces X and Y have k-networks of cardinality  $\tau \geq \aleph_0$ , then their product  $X \times Y$  has a k-network of cardinality  $\leq \tau$ .

**Proof.** Let  $P_1 = \{E_\alpha : \alpha \in A\}$  and  $P_1 = \{M_\beta : \beta \in B\}$  be k-networks in X and Y, respectively. We show that  $P_1 \times P_2 = \{E_\alpha \times M_\beta : \alpha \in A, \beta \in B\}$  is a k-network of cardinality  $\leq \tau$  in  $X \times Y$ . Let  $K \subset X \times Y$  be an arbitrary compact and let G - be its arbitrary neighborhood in  $X \times Y$ . Then  $\pi_1(K) = K_1$  and  $\pi_2(K) = K_2$  are compacts in X and Y, respectively. Furthermore,  $\pi_1(G) = G_1$  and  $\pi_2(G) = G_2$  are neighborhoods of compacts  $K_1$  and  $K_2$ , respectively.

 $P_1$  and  $P_2$  are k-networks in X and Y, respectively, there exist elements  $E_{\alpha_1}, E_{\alpha_2}, \ldots, E_{\alpha_n} \in P_1$ ,  $M_{\alpha_1}, M_{\alpha_2}, \ldots, M_{\alpha_n} \in P_2$ , such that  $K_1 \subset \bigcup_{i=1}^k E_{\alpha_i} \subset G_1$  and  $K_2 \subset \bigcup_{j=1}^s E_{\alpha_j} \subset G_2$  in X and Y, respectively. Then  $K_1 \subset \bigcup_{i,i=1}^{k,s} E_{\alpha_i} \times M_{\beta_j} \subset G$ . Therefore,  $P_1 \times P_2$  is a k-network cardinality  $\leq \tau$  in  $X \times Y$ . Proposition 3.2 is proved.

**Corollary 3.2.** If  $P = \{E_{\alpha} : \alpha \in A\}$  is a k-network of cardinality  $\tau \geq \aleph_0$  in X, then  $P^n = \{E_{\alpha_1} \times E_{\alpha_2} \times \ldots \times E_{\alpha_n} : E_{\alpha_i} \in P, i = 1, 2, ..., n\}$  is a k-network of cardinality  $\leq \tau$  in  $X^n$ .

**Corollary 3.3.** Suppose that topological space X have k-network of cardinality  $\tau \geq \aleph_0$ , then the space  $X^n$  has a k-network of cardinality  $\geq \tau$ .

**Theorem 3.4.** Let X be an infinite compact  $T_2$ -space with a k-network of cardinality  $\tau \geq \aleph_0$  and G be an arbitrary subgroup of the group  $S_n$ . If  $G_1$  and  $G_2$  are subgroups of the permutation group  $S_n$  that  $G_1 \subset G_2$ , then spaces  $\prod^n (X)$ ,  $SP_{G_1}^n(X)$ ,  $SP_{G_2}^n(X)$ ,  $SP^n(X)$ ,  $\exp_n X$ ,  $P_n(X)$  have a k-network of cardinality  $\leq \tau$ .

**Proof.** Let X be an infinite compact  $T_2$ -space with a k-network of cardinality  $\tau \geq \aleph_0$ . Then by corollary 3.1, the compact  $X^n$  has a k-network of cardinality  $\leq \tau$ . It is known that  $SP^n(X)$  is a quotient space of  $X^n$ . Since a quotient mapping is "onto", by proposition 3.1 and equalities (3.1), we see that each of the spaces  $SP^n_{G_1}(X)$ ,  $SP^n_{G_2}(X)$ ,  $SP^n(X)$ ,  $exp_nX$  has a k-network of cardinality  $\leq \tau$ .

In [11] it is shown that  $P_n(X)$  can be represented as a continuous image of the space  $X \times \sigma^{n-1}$ , where  $\sigma^{n-1}$  is the (n-1)-dimensional simplex. The mapping  $\pi : X \times \sigma^{n-1} \to P_n(X)$  is defined with the formula  $\pi(x_1, ..., x_n, m_1, ..., m_n) = \sum_{i=1}^n m_i \delta_{x_i}$ , where  $(m_1, ..., m_n) \in \sigma^{n-1}$ ,  $\sum_{i=1}^n m_i = 1$  and  $m_i \ge 0$ for each  $i \in N$ ,  $\delta_{x_i}$  is Dirak's measure at point  $x_i$ , respectively. The mapping  $\pi$  is perfect, since  $\pi$ is continuous mapping defined on compact  $X \times \sigma^{n-1}$ . Therefore, by proposition 3.1, we see that the space  $P_n(X)$  has a k-network of cardinality  $\le \tau$ . Theorem 3.4 is proved.

**Corollary 3.5.** Functors  $\prod^n$ ,  $SP_{G_1}^n$ ,  $SP_{G_2}^n$ ,  $SP^n$ ,  $exp_n$ ,  $P_n$  preserve k-network of infinite compacts.

#### 4 Conclusions

In the paper k-networks, the density, the weak density, the local density and the local weak density of topological spaces are investigated. In section 2 it is proved that  $\pi$ -irreducible mappings preserve the density and the weak density. Besides, it is shown that the local density (the local weak density) of the inverse image of a topological space under  $\pi$ -irreducible mapping is not greater than the local density (respectively, the local weak density) of the space. In section 3 k-networks of infinite compacts are considered. The main result in section 3 is that functors finite product, the permutation group, exponential functor and the functor of probability measures preserve the cardinality of k-networks for infinite compacts.

## Acknowledgment

We would like to thank to reviewers for their helpful advices and detailed comments that helped to increase the quality of the paper.

## **Competing Interests**

The authors declare that no competing interests exist.

## References

- [1] Fedorchuk VV, Filippov VV. General topology. Basic Constructions. Moscow: Fizmatlit. 2006;332.
- [2] Beshimov RB. On weakly density of topological spaces. DANRUz, N11. 2000;10-13.
- [3] Engelking R. General topology. Moscow: Mir. 1986;752.
- [3] Beshimov RB, Mukhamadiev FG, Mamadaliev NK. The local density and local weak density of hyperspaces. International Journal of Geometry. 2015;4(1):42-49.
- [4] Beshimov RB, Djabbarov GF. On local weakly separable spaces. Methods of Functional Analysis and Topology. 2005;3:217-221.
- [5] Juhasz I, Szentmiklossy Z. The projective  $\pi$ -character bounds the order of a  $\pi$ -base. Proceedings of the American Math. Society. Vol. 2008;136(8):2979-2984.
- [6] Lin S. Point-countable covers and sequence covering mappings. Chinese Science Press, Beijing; 2002 (in Chinese).
- [7] Arhangel'skii AV. Mappings and spaces. Russian Math. Surveys. 1966;21:115-162.
- [8] Fedorchuk VV, Filippov VV. Topology of hyperspaces and its applications. Moscow: Mathematics, Cybernetics. 1989;T.4:48.
- [9] Li Zhaowen, Lin Fucai, Liu Chuan. Networks on free topological groups. Topology and its Applications. 2015;180:198.
- [10] Basmanov VN. Covariant functors, retracts and dimensions. DAN SSSR. 1983;5(271):1033-1036.

 $\bigcirc$  2015 Beshimov et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

#### Peer-review history:

The peer review history for this paper can be accessed here (Please copy paste the total link in your browser address bar)

http://sciencedomain.org/review-history/10329