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Abstract

Inspired by Gale’s proof of Farkas’s lemma, this expository note aims to give a very simple and

intuitive proof of Gordan’s theorem and the equivalence of this theorem to Farkas’s lemma and

some formulations of the separating hyperplane theorems. The tool we have employed is limited

to only very simple linear algebra over the field of real numbers.
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1 Introduction

Gordan’s theorem was published in 1873 [1], many years before another equivalent version, namely
Farkas’s lemma [2], which was published around the year 1900. These theorems have important
implications to other areas such as linear programming and economics. It is not our goal to introduce
the full history here, but the interested reader may refer to [3] for an account of history regarding
Farkas’s lemma, and to [4] for other related theorems, such as Stiemke’s theorem [5] (a.k.a. the
Fundamental Theorem of Asset Pricing [6]), Motzkin’s theorem [7], Gale’s theorem [8], and von
Neumann’s mini-max theorem [9]. In [3], the author already mentioned the equivalence of many
of such theorems, and he gave an analogy that these theorems are like the cities on a plateau: it
is comparatively easier to travel from one city to the other, but to reach one of these cities, one
needs to climb up to the plateau. In [10], the author referred to introducing Farkas’s lemma as a
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“pedagogical annoyance” because some parts of it are easy to verify while the main result cannot be
proved in an elementary way. Earlier simple algebraic proof was given by Gale [8], but he mentioned
that the proof is rather formal and doesn’t make it clear why the theorem works. Motivated by the
above comments and inspired by Gale’s algebraic proof, we offer here a simple and intuitive (i.e.
with more geometric flavor) proof of Gordan’s theorem. Furthermore while economists [11] would
give proofs for versions of separating hyperplane theorems based on intuition from economics and
pricing, mathematicians would most likely dismiss such economics theorems as consequence of the
separating hyperplane theorems. Hence we take the opportunity here to state some versions of the
separating hyperplane theorems, and we prove that these separating hyperplane theorems are in
fact equivalent to Gordan’s theorem and Farkas’s lemma. Since these theorems are widely applied
in many different areas, we hope that our results deliver some level of simplicity and clarity, and
being self-contained, they might serve some pedagogical purpose.

2 Preliminaries

We intend to formulate all theorems in a geometric language. So let’s start with the following
definition.

Definition 2.1. A linear polyhedral cone in Rn is a set V generated by nonzero vectors v1, · · · , vm ∈
Rn with nonnegative coefficients, i.e.

V = {α1v1 + · · ·+ αmvm|αi ≥ 0, i = 1, · · · ,m},

denoted by V =< v1, · · · , vm >+ . We say that V is pointed if

α1v1 + · · ·+ αmvm = 0, αi ≥ 0, i = 1, · · · ,m⇒ α1 = · · · = αm = 0.

Remark 2.1. It is easy to show that V is pointed if and only if V does not contain a line.

We now distinguish ourselves with the following three versions of separating hyperplane theorems.

Theorem A. (Supporting Hyperplane Theorem or Gordan’s Theorem) Let V =< v1, · · · , vm >+

be a pointed linear polyhedral cone. Then there exists y such that

y · vi < 0, 1 ≤ i ≤ m.

In this case, we say that the hyperplane H defined by H = {v|v · y = 0} is a supporting hyperplane
for V at {0}.

Theorem B. (Separation I) Let V =< v1, · · · , vm >+ be a pointed linear polyhedral cone and S
be a vector subspace (of Rn) such that V ∩ S = {0}. Then there exists a hyperplane H containing
S such that H forms a supporting hyperplane for V at {0}.

Theorem C. (Separation II) Let V1 and V2 be two pointed linear polyhedral cones such that
V1 ∩ V2 = {0}. Then there exists y such that y · v < 0 for all nonzero v ∈ V1 and y · v > 0 for all
nonzero v ∈ V2.

Remark 2.2. We mention here Gordan’s original formulation of Theorem A (Gordan’s Theorem).
Let S be a system of linear equations with real coefficients in the unknowns x1, · · · , xm. We say
that (x1, · · · , xm) is a semi-positive solution of S if (x1, · · · , xm) satisfies the system and xi ≥
0, i = 1, · · · ,m but not all zero. Clearly a linear equation F := A1x1 + · · · + Amxm = 0 has no
semi-positive solutions if all the coefficients Ai’s are positive. Conversely, Gordan [1] showed that
if S has no semi-positive solutions, then S leads to a linear equation of the above form F = 0. For
completeness, we indicate below that this latter formulation follows directly from Theorem A.
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Proof. Let S be described by the system AX = 0, where A is an n × m matrix and X =
(x1, · · · , xm)T . If S has no semi-positive solutions, then the linear polyhedral cone formed by
the column vectors v1, · · · , vm of A is pointed (in Rn). Now Theorem A implies that there exists
y ∈ Rn such that y · vi < 0, i = 1, · · · ,m. This shows that −yTA = (A1, · · · , Am), where Ai’s are
all positive. Then F := −yTAX = 0 yields the required linear equation.

Remark 2.3. Theorem B clearly implies Stiemke’s theorem, and vice versa (see e.g. [6], [12], [13]
for details).

Remark 2.4. Theorem A and Theorem C are equivalent.

Proof. It is trivial to see that Theorem C implies Theorem A. Conversely, let V1 =< u1, · · · , um >+

and V2 =< v1, · · · , vr >+ be pointed linear polyhedral cones, and V1 ∩ V2 = {0}. Consider V =<
u1, · · · , um,−v1, · · · ,−vr >+. Then it is easy to see that V is pointed, since

αu1 + · · ·+ αmum + β1(−v1) + · · ·+ βr(−vr) = 0, α1 ≥ 0, · · · , αm ≥ 0, β1 ≥ 0, · · · , βr ≥ 0

⇒ α1u1 + · · ·+ αmum = β1v1 + · · ·+ βrvr ∈ V1 ∩ V2 = {0}
⇒ α1 = · · · = αm = 0 and β1 = · · · = βr = 0.

By Theorem A, there exists y such that y · ui < 0, 1 ≤ i ≤ m and y · (−vi) < 0, 1 ≤ i ≤ r. This is
the same as saying y · v < 0 for all nonzero v ∈ V1, and y · v > 0 for all nonzero v ∈ V2.

We now state

Farkas’s Lemma. Let V be a linear polyhedral cone in Rn and b /∈ V be a vector in Rn. Then
there exists a vector y such that y · v ≤ 0 for all v ∈ V and y · b > 0.

We will prove Theorem A (Gordan’s theorem) in section 3, and the equivalence of Theorem A,
Theorem B (Separation I) and Farkas’s lemma in section 4.

3 Geometric Proof of Gordan’s Theorem

Proof. We prove by induction on the number m of the generators of the pointed polyhedral cone,
the case of m = 1 being trivial. Assuming the case m− 1 (m ≥ 2), we move on to show the case of
m. Suppose we are given the generators {v1, v2, · · · , vm} of V .

By induction hypothesis applied to the cone generated by {v1, · · · , vm−1}, there is a vector y1

satisfying y1 · vi < 0,∀i < m. If y1 · vm < 0, we would be finished. Hence we just need to deal with
the following two subcases:

Subcase 1: y1 · vm = 0. In this case, we perturb y1 by replacing it with y′ = y1 − εvm. If ε > 0 is
small enough, we will still have y′ · vi < 0, ∀i < m, however y′ · vm < 0. This concludes Subcase 1.

Subcase 2: y1 · vm > 0. In this case, the set of vectors {v1, · · · , vm−1} and the vector vm are
separated by the hyperplane H with normal vector y1. For each of the vi’s with i < m, the
polyhedral cone generated by vi and vm intersects H at a ray (note that vi and vm are necessarily
linearly independent by the assumption on V ). For each i < m and on the corresponding ray, we can
have a vector v′i ∈ H of the form v′i = vi +aivm for some ai > 0. It is clear that < v′1, · · · , v′m−1 >+

satisfies the assumption of Gordan’s theorem, otherwise, we will have a relation of v1, · · · , vm with
semi-positive coefficients: namely a relation

∑m−1
i=1 civ

′
i = 0 with ci’s nonnegative and not all zero

implies
∑m−1

i=1 ci(vi + aivm) =
∑m−1

i=1 civi + (
∑m−1

j=1 cjaj)vm = 0, contradicting the assumption of

Gordan’s theorem for < v1, · · · , vm >+. Hence by induction hypothesis applied to {v′1, · · · , v′m−1},
there exists y′ such that y′ · v′i < 0, ∀i < m. Note that adding a multiple of y1 to y′ (i.e. replacing
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y′ by y′ + cy1) does not change the condition y′ · v′i < 0 (since y1 · v′i = 0), while we can do this in
such a way that the resulting y′ satisfies further the condition y′ · vm = 0 : to achieve this, solve
(y′ + cy1) · vm = 0 for c, and replace y′ by y′ + cy1.

But now, we have y′ · vi = y′ · (v′i − aivm) = y′ · v′i < 0, ∀i < m and y′ · vm = 0, hence we have
reduced to Subcase 1.

Remark 3.1. Gordan’s theorem and Farkas’s lemma stay true when the base field is replaced by
linearly order (skew-)field (see [14] and [15] for more details).

4 Equivalence of Gordan’s Theorem, Separation I and
Farkas’s Lemma

Farkas ⇒ Gordan

Proof. Let V =< v1, · · · , vm >+ be pointed. Consequently −vi /∈ V for each i.

By Farkas’s Lemma applied to V and −vi, there exists yi such that yi · vj ≤ 0 for 1 ≤ j ≤ m and
yi · (−vi) > 0. This implies, for each i, yi · vj ≤ 0 for all i 6= j but yi · vi < 0.

Letting y := y1 + · · ·+ ym, it is clear that y · vi < 0 for 1 ≤ i ≤ m.

Gordan ⇒ Separation I.

Proof. Let V =< v1, · · · , vm >+⊆ Rn be pointed and S ⊆ Rn a subspace such that V ∩ S = {0}.
In particular, V satisfies the assumption of Gordan’s theorem:

∑m
i=1 αivi = 0, αi ≥ 0⇒ αi = 0 ∀i.

Let {u1, · · · , us} be a basis of S (we may assume dim(S) = s > 0 otherwise the result is trivial). Let
L (by abuse of notation, we regard this also as the matrix representing the linear transformation)

be any invertible linear transformation mapping uj to

[
0
ej

]
for each j, 1 ≤ j ≤ s, where ej ’s form

the standard basis of Rs.

Let Lvi =

[
v′i
si

]
, 1 ≤ i ≤ m, where v′i ∈ Rn−s. We now show that v′i’s satisfy the assumption of

Gordan’s theorem: if
∑
αiv
′
i = 0, αi ≥ 0 ∀i, then

∑
αi(Lvi) is of the form

[
0
u

]
∈ LV ∩LS = {0}.

Thus ∑
αi(Lvi) = 0⇒ L(

∑
αivi) = 0

⇒
∑

αivi = 0⇒ αi = 0, ∀i.

By Gordan’s theorem applied to < v′1, · · · , v′m >+, there exists y′ ∈ Rn−s such that y′ · v′i < 0, ∀i.
Therefore [

y′

0

]
·
[
v′i
si

]
< 0, 1 ≤ i ≤ m, and

[
y′

0

]
·
[

0
ej

]
= 0, 1 ≤ j ≤ s.

In terms of matrices (denoting also by V the matrix formed by vi’s and by S the matrix formed by

ui’s), the above relations can be written as [y′T 0]LV < 0 and [y′T 0]LS = 0. Letting y := LT

[
y′

0

]
,
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we see that yTV < 0 and yTS = 0. Namely, the hyperplane H with normal vector y contains S and
forms a supporting hyperplane for V at {0}.

Separation I ⇒ Farkas

Lemma 4.1. Let V =< v1, · · · , vm >+ be a polyhedral cone. Then up to reordering, we may
assume that the first r vectors (not necessarily linearly independent) generate W := V ∩ (−V )
over the real numbers and the remaining m− r vectors generate a pointed polyhedral cone V ′ over
nonnegative real numbers, and we have a decomposition V = W + V ′ with W ∩ V ′ = {0}, where
W + V ′ := {w + v′|w ∈W and v′ ∈ V ′}.

Proof. (of Lemma 4.1) It suffices to observe that if α1vi1 + · · · + αkvik = 0 such that α1 >
0, · · · , αk > 0, then each of vi1 , · · · , vik belongs to V ∩ (−V ) = W. Conversely, if vi ∈ W , then
−vi ∈ V, i.e. −vi =

∑m
i=1 cjvj , where cj ≥ 0, not all zero, whence vi satisfies a relation of the form

α1vi1 + · · ·+ αkvik = 0 with positive coefficients.

Proof of “Separation I ⇒ Farkas”. Let V =< v1, · · · , vm >+ and b /∈ V , we need to find y such
that y · vi ≤ 0 and y · b > 0.

Consider V1 :=< v1, · · · , vm,−b >+ and use Lemma 4.1 to decompose V1 = W + V ′1 . Note that
−b /∈ W : if −b ∈ W, then as in the proof of Lemma 4.1, there is a relation

∑
i∈Λ αivi + (−b) =

0, αi > 0⇒ b =
∑

i∈Λ αivi ∈ V , a contradiction. By Separation I applied to V ′1 and W , there exists
y such that y · w = 0 for all w ∈ W and y · v < 0 for all v ∈ V ′1 . Since −b ∈ V ′1 , we have y · b > 0.
Similarly by Separation I, y · vi = 0 or y · vi < 0 according as vi ∈W or vi ∈ V ′1 , therefore y · v ≤ 0
for all v ∈ V.

5 Conclusion

Most of the theorems in this note can be recast in the format of theorem of alternatives (see [4] for
more details). In this short note, we have singled out a few theorems and proved their equivalence;
in fact more is true: many other related theorems are equivalent to these theorems: these were
observed in [12], and in [13] for an expanded version.
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[2] Farkas J. Über die Theorie der einfachen ungleichungen. Journal für die Reine und Angewandte
Mathematik. 1902;124:1-24.

[3] Broyden CG. A simple algebraic proof of Farkas’s lemma and related theorems. Optim.
Methods Softw. 1998;8:185-199.

5



Perng; BJMCS, 10(5), 1-6, 2015; Article no.BJMCS.19134

[4] Mangasarian OL. Nonlinear programming. McGraw-Hill, New York; 1969.
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