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Abstract

In this paper, we consider a new class of convex functions which is called A-preinvex functions.
We prove several Hermite-Hadamard type inequalities for differentiable A-preinvex functions via
Fractional Integrals. Some special cases are also discussed.
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1 Introduction

The convexity property of a given function plays an important role in obtaining integral inequalities.
Proving inequalities for convex functions has a long and rich history in mathematics. Let f : I C
R — R be a convex mapping defined on the interval I of real numbers and a,b € I with a < b. The
following inequality:

b
(450) < 2 e < L0 (1)
is known in the literature as Hermite-Hadamard inequality for convex mappings. Note that some
of the classical inequalities for means can be derived from (1.1) for appropriate particular selections
of the mapping f. Both inequalities hold in the reversed direction if f is concave.

Over the last decade, this classical inequality has been improved and generalized in a number of
ways; there have been a large number of research papers written on this subject, (see, [1]-[17]) and
the references therein.

A significant generalization of convex functions is that of invex functions introduced by Hanson
in [7]. Ben-Israel and Mond [2] introduced the concept of preinvex functions, which is a special
case of invexity. Note that preinvex functions are nonconvex functions and includes the classical
convex functions and its various classes as special cases. Noor [8]-[11] has established some Hermite-
Hadamard type inequalities for preinvex and log-preinvex functions. In recent papers Barani et al.
in [1] presented some estimates of the right hand side of a Hermite- Hadamard type inequality
in which some preinvex functions are involved. For some recent results related to this nonconvex
functions, see the papers ([8]-[11], [12]).

Now, we will give some definitions, lemmas and notations which we use later in this work.
Definition 1.1. ([13]) Let f € L [a, b] .The Riemann-Liouville fractional integral J, f and J;* f
of order o > 0 are defined by
@ _ 1 T a—1
T2 f @) = gy @ =00 @t o<
(1.2)

T f(x) = o [Pt —2)°" f(t)dt ,x<b

where I" is the gamma function.
Definition 1.2. ([4]) The incomplete beta function is defined as follows:

Ba(a,b) = [Ft°7t (1 —¢t)" " dt, (1.3)
where z € [0,1], a,b > 0. Bi(a,b) = B(a,b) is so-called beta function.

Definition 1.3. ([16]) A function f : I C R — R is said to belong to the class MT (I) if f it is
nonnegative, for all z,y € I and ¢ € (0, 1) satisfies the inequality:
Vit V1I—t
tr + (1 —t < ———f(x)+ . 1.4
fla+ (=09 < o0 f @)+ St w) (1.4
Lemma 1.1. ([14]) Let f : [a,b] — R be a differentiable mapping on (a,b) fora < b. If f' € L]a,b],
there is the following equality for fractional integrals:

J@+I®) T+l . )
2 T 2—ayr eSO+ I (@)]

_b-a
)

fl[(l — ) — ] f' (ta + (1 — t) b) dt.
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Lemma 1.2. ([17]) Let f : [a,b] — R be a twice differentiable mapping on (a,b) for a < b. If
f" € L[a,b], there is the following equality for fractional integrals

J@1SB) Tt . )
2 T 2(b—a)" [J24 f (b) + T f (a)]

1.6
1 1— (1 _ t)a+1 _ ta+1 ( )

=22 " F” (ta+ (1 —t)b) dt.

Lemma 1.3. ([5]) Fort € [0,1], the following inequalities holds:
1-t)m<2v=™ ™ for m € [0,1],
1-t)">2"™ —t™  forme[l,00).

Let R™ be Euclidian space and K is a nonempty closed in R”. Let f : K — Randn: KxK — R
be a continuous functions.

Definition 1.4. ([8]) Let u € K. The set K is said to be invex at u according to 7 if
u+tn(v,u) € K (1.7)

for all u,v € K and t € [0, 1].

Now, we establish new a class of convex functions and then we obtain new Hadamard type
inequalities for the new class of convex function.

Definition 1.5. Let f: I C R — R be a nonnegative function. A function f on the set K, is said
to be A—preinvex function according to bifunction n and for all u,v € I, A € (0, %} , t €(0,1), then

(1—N\)V/I=t
mf(”)+Wf(u)~ (1.8)

flutin(v,u) <
Remark 1.1. In Definition 1.5, if A = %, and 1 (v,u) = v — u. Definition 1.5 reduces to Definition
1.3.

Our goal in this paper is to state and prove the Hermite-Hadamard type inequality for preinvex
functions via Riemann-Liouville fractional integrals. In order to achieve our goal, we first give two
important lemmas and then by using these identities we prove some integral inequalities.

2 Main Results

Lemma 2.1. Let f : [a,b] — R be a once differentiable mappings on (a,b) with a < b, n(b,a) > 0.
If f' € L{a,a+n(b,a)], then the following equality for fractional integral holds:

f@+flat+nba) T(+1) [, .
2 D) (n(b,a))® [‘]a+f (a+n(b,a)) + J(aﬂl(b’a)),f (a)]

_ ’7(’; D V1= 0% ] f (a+ (1 — (b a)) dt.
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Proof. Integrating by part and changing the variable of definite integral yield
Jo [ =0 =] f (a+ (1 = t) n(b, a)) dt

flat (1 —t)nba)|

“n(b,a) - fo (A=) +°7 '] f(a+ (1 —t)n(b, a)) dt

= [(1- )" —1°]

0

_ fla)+fla+n(ba)) o 1 a+n(b,a) a—1
- (b, a) - n(b.a) [(n(b, g da T @k nb,a) ) f (2)de

1 a+n(b,a) a—1
Gy i o ]
fla)+ flatnba) Tlat+l) [, o

v e (n(aaa))a [ @ @)+ - S @)
(2.2)

By multiplying the both sides of (2.2) by @, we have:

f(a)+ f(a+mn(b, Fla+1 o o
= (; S 2(75?@ a)))a [Ja+f(“+’7(b’ @) *J(a+n(b,a>>—f(“)}
fo [(T=8)"=t] f (a+ (1 —t)n(b,a))dt.
Lemma 2.1 is thus proved. O

Remark 2.1. In Lemma 2.1, if n (b,a) = b — a, Lemma 2.1 reduces to Lemma 1.1.
Theorem 2.2. Let I C R be a open invexr set with respect to bifunction n : I x I — R where

n(b,a) > 0. Let f : [0,b] — R be a differentiable mapping. If |f'| is A—preinvex function on I for
a>0and0<a<b, then:

l fla)+ fla+n(,a) T(a+1) [Jg;f (a+n0(b,a)) + I 4 pan- I (a)] ‘

2 2(n(b,a))*

n(b,a
<0 By (fa+) =By 0+ 1) + By (hat 3 - By 0+ 4.3

<A1 (@)l + == 1 )] -
@ 52w

Proof. By using Definition 1.5 and Lemma 2.1, we have:

f(a)+f(atn(b,a I'(a+1 @ «
(a)+f(a+n(b,a)) _ 2(,,<(b,a)§a [Ja+f(a+n(b7 a)) + J<a+n<b’a)),f(a)”

(1= )" =] |f (a+ (1L =) (b, a))| dt
2 (300" = 117 (@t (L= O nte. )|t

+ 117 = (1= 0°1f (a+ (1= (b, a))| dt]
20 |31 - 1) — 1] (35 | (@) + SR | (0)) e

+ 1= (=07 (555 1f @)+ S| o)) ]

< n(b,a)

<7I(

IN
=~
I~
o
S
N
—
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A

< 200 [\f()\o (-0 — %] — 1 dr

+ ST WG [ = (1= 0] gt de

n(b, a)
T{Bé (3a+) - B

IN

/ 1-2A !
< i@+ 2 o).
The proof is done. O

Theorem 2.3. Let I = [a,b] — R be a open invex set with respect to bifunction n: I x I — R
and f : [0,b] — R be a differentiable mapping and 1 < g. If |f'|* is A—preinvez function on I for
0<a<bandn(,a)>0 then:

fl@)+ fla+nb,a) T(at+1) 7, )
‘ 2 D) (n(b,a))” [Ja+f (a+n(b,a)) + J(a+n(b,a))—f (a)] ‘

Q=

1
1 92— 21 ap
< 1(ba) (E)P ™ LRI E AT
<20 (1) (Foasr ) (7 @I+ 15217 o)1)
1,1 _
where a > 0, ;Jrgfl.
Proof. By using Definition 1.5, Lemma 2.1 and Holder’s inequality, we have:

fl@)+fa+nba) Tla+l) [, .
‘ 2 ~ 2(n(b,a)” [Ja+f(a+77(b, a)) + J(Hn(b’a)),f(a)H

< 25D (1= 1) = %] If (a+ (1= £) (b, )] dt

<t (- t‘*V’dt)”(j|f’<a+(1t)n(lb,a»r‘dt)é
<2 (0f1|(1—t —t“|pdt>;

1

[ (17 @I+ S | @) )

IN
=
N
&
Q=

1A [ @)+ 5 (552) 1 0))]

D=

1
b 1

x| [1(X=t)*P —t*P]dt + [ [t°P — (1 —t)*P]d¢
0 1

v

e

n(b,a T 1 T 1—a — /
<1 (2)} (2252)T (1 @ + 55217 )
Here, we (A1 — AQ)P < AT — AP for any A; > Ay > 0 and p > 1. The proof is done. O

Theorem 2.4. Let I = [0,b] — R be a open invexr set with respect to bifunction n : I x I — R
and f:[0,b] — R be a differentiable mapping and 1 < q, f' € La +n(b,a)]. If |f'|* is \—preinvex
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function on I for 0 <a <b and n(b,a) >0 then:

fl@+fa+nba) T+l [, X
‘ 2 2 (n(b,a))* [Ja+f (a+n(ba)) + J(a-’-n(b,a))* f (a)] ’

H
lw

)+ By (3,a+3) =By (at3,3

SIS

I

<27an(b,a) [By (3,a+1) - By (a+

q—1 1
1—-27"\ 7 []/(a) 1o |F®]] e
( a+1 ) { 2 + (T) ‘ 2 :

where o > 0.

X

Proof. By using Definition 1.5, Lemma 2.1 and power mean inequality, we have:

f(a)+ f(a+n(b,a)) T(a+1) 1., §
' 2 T 2(n,a)°” [Ja+f (a+n(b,a)) + I8 s pan- I (a)} ‘

< 159 fo [(1=6) =t*[|f" (a+ (1 = t)n(b,a))| dt

1

(fo [ —t‘l|dt)1_5

| /\

1

(fo (1= ) =t 1f (a+ (1= ) n(b, @))|" dt)

X

(b (fo [(1- 1)~ —ta]dt+f%1[ta—(l—t)“]dt)k%

[ /\

x (o 0= =22 15" (a+ (L= ) (b)) dt) *

<200 (22T o - (oA 1 @+ S g a
- a0 (s 1 @+ S o) ]

1
<2in(ba) ([By (2ot 1)~ By (a4 3.2) 4 By (ha+2) — By (a+ 5, 3)])

g—1 1
1=27"\ @ [|r@|* | /1oy [F7®]7] ¢
X( a+1 ) [ 2 +(T) 2 :

The proof is done. O

Lemma 2.5. Let f : [a,b] — R be a twice differentiable mappings on (a,b) with a < b, n(b,a) > 0.
If f" € La,a+n(b,a)], then the following equality for fractional integral holds:

f(a)+ fla+nba) Tla+l) 1, )
‘ 2 T2, a)” 72§ (@t (b, @) +J(fl+n(b7a))’f(a)]‘

_( n(b, a))?
2(a+1)

(2.3)
Sl =@ =0 =t 7 (a+ (1 - t) n(b, a)) dt.
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Proof. Integrating by part and changing the variable of definite integral yield

1— (1 _ t)aJrl _ ta+1
a+1

I

f"(a+ (1 =t)n(b,a))dt

1= @@= =) f (a+ (1 — ) nb,a) |

f(a
(a+1)n(b,a)

n(b, a) Jo =8 =] f (a+ (1 —t)n(b,a)) dt

- n(b, a) fo (L= =t f (a+ (1 —¢)n(b,a))dt.

Motivated by Lemma 2.1, then:

@ (S 0= =217 (a+ (1 = ) n(b,a) )
(2.5)

(
(1(b, a))* (n(b,a))*

_ f@)+ flatnba) T(a+t 112 [J3+f(a+77(b, )+ J&M(b’a))_f(a)] .

2
By multiplying the both sides of (2.5) by @, we have (2.3). The proof is done. O

Remark 2.2. In Lemma 2.5, 1 (b,a) = b — a. Lemma 2.5 reduces to Lemma 1.2.

Theorem 2.6. Let f : [0,b] — R be a differentiable mapping. If |f"| is A—preinvez function on
[0,b] for 0 < a < b, n(b,a) > 0 and o > 0, then the following inequality for fractional integrals
holds:

f(a)+ fla+nba) Tla+1) 1, o
| ‘ e [ @ )+ T -1 (@)
< e {|f” N[E-BGa+2)—Bla+il)]

+(1— )|f~<>\[g—B@,wg)—B(wg,%n}-

Proof. By using Definition 1.5 and Lemma 2.5, we have:

fla)+fa+nba) T+l 7, )
' 2 "~ 2(n(b,a)” |:Ja+f (a+n(b,a)) + I8 4 oayy-f (a)] ‘

1— (1=t —got?
a+1

( a+l a+1 \/i 7 (1_>\)\/1_t
i D=0t (o G

< (b, a)) fr |/ (a+ (1 —t)n(b,a))|dt

) ar
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IN

(2((a+)i){\f”2() (R a0 a— o @-nra— Lot 107 ar)

+(%)L2(b)‘(folt%l( 2dt fo (1—1¢)° dt—folta-"%(l—t)%dt)}

1—-X
(52 eIE - Gas ) - B 1]
The proof is done. o

Theorem 2.7. Let f : [0,b] — R be a differentiable mapping and 1 < q. If |f"|* is A—preinvex
function on [0,b] for n(b,a) >0 and 0 < a < b, then the following inequality for fractional integrals
holds:

fla)+ flat+nba) T(a+1) 1, 3
' 2  2(n(b,0)" [J“+f(a+"(b’ o)) + J(a+n(b,a>>*f(a)]‘

Q[

( ( )) 1— 7 q 1—X 1" q
< =22 (1-27% (2 T (12 b
2(a+1)( )(4|f (a) +4(A)|f()|)
where o > 0, 5—}—5:1.
Proof. By using Definition 1.5, Lemma 2.5, Lemma 1.3 and Holder’s inequality we have:

f@)+fatnba) Tt [, .
2 ~ 2(n(b,a)" [Ja+f(“+”(b’ @) +J(a+n(b,a>>*f(a)H
a)? |1 = (1 =)o+t — ot .
< OO L 0D 20 ot (1 - ) ()

\ /\

GO (3 [ e P (15 @ (= )

(n(bva))Q 1 —alP % 1 \/E 7 q (1_)‘)\/m 7 q ! !
< oy (0 -2 ra)” (1 (s 1 @+ S = o) «)
(n(bv a))2 -« ™ " q ™ (1= 1" %
< G (=27 (G @ + 5 (52) 117 B
The proof is done. O

Theorem 2.8. Let f : [0,b] — R be a differentiable mapping and 1 < q. If |f"|? is A—preinver
function on [0,b] for 0 < a < b and n(b,a) > 0, then the following inequality for fractional integrals
holds:

'f (a)+ f (; +n(b,a) Qr(é?b:)l))" [J;f (a+nb,a) + 8, ay-f (a)] ‘
<ol @) (L B e rp@er ) -3
() EP B e B -5)
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where o > 0.
Proof. By using Definition 1.5, Lemma 2.5, Lemma 1.3 and power mean’s inequality, we have:

‘f(a)+f(a+?7(b,a)) _ Tla+1)
2 2(n(b, a))*

1— (1=t —got?
a+1

7208 (@4 000,00 4 0 @)

< .a)?

<= 0 If" (a+ (1 =t)n(b,a))| dt

1

< % (Jy o=@ =yt =gty dt)kE
x (fo 11 = (=0 = 17" @+ (L= ) n(b,a))|"dt) "

1—

Q=

< Sty (B -0 = a)

Q=

x (fo L= =™ =] (A 17 (@) + S22 57 0)]7) de)

(n(b,a))? —ayl-3
< g(a+1) (1_2 ) !

a4
X (L Gl (b= Fa—fyedq-nta- fyetda-nta)

1
q

2 q
+(2) L (et - ba- et a-omEa- et oot a))

,a 2 —a -1 f”(a)q T
cge a2 (Kl 5 -pGas - B+ 1)
7w ‘
_ O] - a
+(52) (5—3(%7a+%)—3(a+%7%))) -
The proof is done. O

3 Conclusion

In the present paper, we consider a new class of convex functions which is called A-preinvex
functions. We prove several Hermite-Hadamard type inequalities for differentiable A-preinvex
functions via Fractional Integrals. Some special cases are also discussed.
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