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Abstract

Moving object detection is an important step in any videwesllsince system, tracking or video activity.
This paper examines the result of the adaptive GaussismiigiModel using the Maximum A posteripr
(MAP) updates on video clips (dataset) obtained from Adeyotiege of Education Ondo, Nigeria. The
results showed a reliable moving object detection dlyori shadows constitute a problem, in that
moving shadows can be mistaken as moving objects. Thewghads suppressed using the HSV and
Phong illumination Model. The overall performance of thistesm was evaluated using the confusjon
matrix and the receiver operating characteristic (ROC), shatktection and shadow discriminatipn
values which showed a better result compared to existing benchmarks
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1 Introduction

Video surveillance has been an active research topic ilashéew years due to the growing importance of
security, law enforcement and military applications.résurveillance cameras are installed on a daily basis
in security sensitive areas such as banks, train statigisyays, and borders. Object activity recognition is
used in identifying the moving objects in video frame sequen¢® [tlis easy for human beings to identify
moving objects in a video clip; it is also not difficutirfhuman beings to categorize such objects as a
vehicle, a human being, a bike or a helicopter. Howevéer réther a difficult task for a computer system to
do the same [3-5], and due to this reason, computer visisnbecome an important field of study. In
computer vision images are acquired, processed and anatypedduce information. Such images can be
taken from video sequences and multiple camera; the apiptis of computer vision in real life includes
medical and automation industry. Adaptive Gaussian Mixture Mizdal system that deals robustly with
repetitive motion of objects, slow moving objects and introdueind removing of objects. This system
works efficiently due to the fact that there are multigistributions for each pixel i.e. if the background
subtraction using Gaussian Mixture Model is used to craatistribution, the distribution is replaced by a
temporary distribution which makes recovery very fast][6,

2 Related Works

Stauffer and Grimson [8-10] modeled the Gaussian distribugorgwadaptive mixture model (background
subtraction and GMM), the guiding factor for this modedl apdate procedure deploys recent history of
each pixel, {X...Xy}. Using K Gaussian distributions. The probability of alvieg the current pixel is:

K
POX.) =D @ * 1 X fis Z5y)
im1

(2.1)
where
k is the number of distribution.
@, is the estimate weight of the ith Gaussian at time t.
M, is the mean of the mixture i at t.
2, is the covariance matrix of ith Gaussian at time t.
— 1 Ts-1
”(XUILI’Z)_WeXp{_E Xe= 1) Z7(X — 4) (2.2)
3 =0¢l 2.3)
The prior weights of k are adjusted by:
%,t = (1_ a)a)k,t—l +aM k.t (2.4)
== P, + PX, (2.5)
0! =(A=p)al,+ p(X = 1) (X, = 14) (2.6)
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p=a*n( X\ u,o,) (2.7
Where @ is the learning rate, M = 0 or 1 and 1¢r is the time constant.

Following some limitations (slow start and shadow remowéljhe work of, [11,9] improved on those
shortcomings. The guiding factor for this model and the ugataedure is as follows.

The probability that a certain pixel has a value gfaktime N can be written as

p(XN)=Zw,-f7(XN;9j)

(2.8)
Where &), is the weight parameter of thd'IGaussian.
AN _ _ 1 1 T -
NX:6) =n(X: ph, 2y) =—————az d= (X~ 4" X7 (X~ 44) (2.9)
(2m) |zk| 2
Where L, is the mean of the kth component.
Y =0}l is the covariance of the kth component 1002.

The online EM algorithm is updated by expected sufficientistitzs using L-recent windows version
[12,13]. Such that:

A

N N N N
" =d +E(P(cq< \ X1 — 1, ) update the weight (2.11)
" n " n N
et = +% Pl@\ XAN”) Ky — U, update the mean (2.12)
%N+l

N
A

A . 1 A N N
PIEED I +E(P(@\ X)X i = )X = 43 T =2 update the variance  (2.13)

where

k is the number of distribution

w‘i\l +1
N+1 . .
M, is the kth Gaussian mean

is the kth Gaussian weight

>N is the kth Gaussian covariance

In this update equation (2.7) was cut off because thenmgoavalues for it in L- recent windows.
Despite the robustness of this work, it removed shadowaslaur consistency only.
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Kuralkar, Landabaso and Nirubama [14-16] modelled andndarveillance tracker very close to [9] but
removed shadows using an hybrid of texture and colour feabfréhe shadow. This makes the shadow
removal scheme very goodThey also use morphological reconstruction [16,17] in camgct
misclassifications of the shadow removal algorithm ugnfigrmation of the images. The shadow removal
algorithm used information of the images not of shadow removedlendhapes are well defined. There is
need to develop an object detection system with a good spéearoihg [18] and a two level (optimised)
shadow removal scheme that will not detect moving shadow®eing object.

3 Design

3.1 Current state estimation

While [12] employed the L-recent windows update equationdetermine the current state of the model
because it allows fast convergence on a stable background, rifoslebsearch work estimated the current
state of the model by classifying each pixel to know howadk$ when the pixel is part of a different class.
Maximum a Posteriori (MAP) learnt how a Mixture of GaassiMOG) will view such a pixel. Like
Expectation and Maximization, MAP is also a two-step edtomgrocess: the first step is used to compute
the estimate of sufficient statistics of the trainingad@r each mixture in the prior model [19]. The second
step handles the “new” sufficient statistics estimated then combines with the “old” sufficient statistics
from the prior mixture parameters [20-23]. The parametegscallectively represented by the notation
[24,25].

o ={Wi,/,1i,zi} (3.1
W, u,2 represents the Gaussian weight, mean and covariance mapexctigely.

A Gaussian Mixture Model of M component Gaussian densigivien by

P(x\0©) =icqg( X\ ) (3.2

X is a D- dimensional continuous valued data vector

@) is the mixture weight, i=1,...M

a(x\ y Zl) = Component Gaussian density

i=1...M
D -Variate Gaussian function

— 1 -1 NI Sy
G(X\MZ)—WGXP{E(X H)TET (%= 1)} (3.3)

where

M is the mean vector

2. is the covariance matrix and

M
@ =1(must be satisfied)
i=1
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O0={w, u4,2} i=1,. M
M is the number of the distributions
M=5
The Posteriori probability for componeiris given by:

wo(x \K,%) (3.4)
M
ZWkg()ﬂ \Y75 1)

=1

Pr(\x ,0)=

Given a prior model and training vectors from a class:

X={X,.ees X} (3.5)

The sufficient statistics for:

Weight’ Ni = i Pra \Xt 'eprior) (36)
l=11 ]
Mean, E, (x) = WZ (Pr( \X ©,0 % (3.7)
i t=1
T
Variance, E, (x*) = Niz (Pr@ \% Opior > (3.8)
i t=1

Equations (3.6) ...(3.8) are the same as Expectation in EM dgorit

The M distributions are ordered based on the fitnesgewa| / 0, and the first B distributions are used as
model of the background of the scene where B is estimated as:

b
B=arg, min{z w > T} (3.9)
i=1

The threshold T is the minimum fraction of the background mdtdie the minimum prior probability that
the background is in the scene. Background subtraction isrpexd by marking a pixel foreground if it is
more than 2.5 standard deviation away from any of the tliitions [26,27].

The above new sufficient statistics from the training dagaused to update the priors sufficient statistics for
mixturei to create adapted parameters for mixiuraving the following equations will update the Gaussian:

w={a"N/ T+Q-a")}a} y (3.10)
to={a"u +(L-a") 4} (3.11)
02 =a'c+(1-a" )@ + 1) - 4* (3.12)
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where
w

a,” is for the mixture weights.

m

a," is for the mixture means.

a’i" is for the mixture variances.
y is the scale factor, which is ensured sum to unity faxddpted mixture weight.

3.2 Shadow removal technique

The technique employed is a two level approach that removedwhaptimally in outdoor situations; this
research work used the HSV suppression and the Phong iceflecbdel, since each of the approaches
suffers its own weaknesses. For example, a pixel dsteabe a shadow if and only if the results of both
removal techniques agrees. Phong reflection model, an ilatrah model widely used in 3D computer
graphics was employed to remove shadows from videarsgePhong reflection model helped to prove the
local coherence (over a pixel neighbourhood) of intensityction ratio used in texture verification. Phong
model exploited the chromaticity, texture and intensity rednd28,29]. According to Phong illumination
model, a surface point is lit by three types of lightmabdent light j, diffuse light i, and specular light.i
The point of luminance in the image is described by:

I=kaigt kg (L.N)ig +ky(R.V)*is 13
Where k is the ambient reflection constany, ik the diffuse reflection constant ik the specular reflection
constant, L is the direction vector from the point on theasartowards the light source, N is the normal at
this point on the surface, R is the direction that a pdyfeetflected ray of light (represented as a vector)
would take from this point of the surface, V is theediion towards the viewes, is a constant (.) is the dot

product operation. Since this work is modeled in two dimerssémd R directions are eliminated from (3.14)
Having k= k= k then the equation above will become:

I =k(i, +(L.N)i,) (3.14)
Relevance is the RGB colour space that becomes:

[T =K1l +(L.N)i’) (3.15)
where index j corresponds to red, green and blue.

A shadow occurs when light power from the light source to asairis partially or completely blocked by
an object. Then the point of luminance becomes:

Lhagon =K' (I3 + B(L.N)I') ©®1
wherep ¢ [0,1] indicating how much diffused light has been blocked.

After that HSV suppression will be applied since the Phoripcteon model works well in indoor
environments.

4 Implementation

The video recordings were captured mainly in environmehterevhuman, human group and vehicles were
freely moving; the experiment also captured video imagesnbalve shadows so as to remove them using
the modified algorithm.
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4.1 Test cases

The test cases involved in this research work arestecd moving regions in a video frame, these regions
could be human, human group and to optimally remove shadowezhsegsing a combination of HSV
suppression and Phong’s Model.

4.1.1 Moving object detection results

The developed algorithm was implemented on the Matlab @0HXferent human motions subjected to
assess how well the algorithm can detect moving regioostdoor scenes using fixed-camera situations. In
video surveillance, motion detection refers to the capglfithe surveillance system to detect motion and
capture the events. Motion detection is usually a softlvased monitoring algorithm which will signal the
surveillance camera to begin capturing the event whetetiécts motions. This is also called activity
detection. In this experiment, a camera fixed to its basebken placed and is set with an observer at the
outdoor scene, while recoding is chosen from time to tAng.small movement with a level of tolerance is
picked and detected as motion.

5 Evaluation

5.1 Detection experimental results

At this stage, moving objects detection rate is beuatat for Human and Vebhicles. Using the following
human actions: Walking (W), Running (R), Boxing (B), Kicki(), Hand Waiving (HW), Clapping (C)
and Occlusion (O). The confusion matrix generated as the redulte tests is shown in Table 1. from
Figs. 4.1, 4.2, 4.3 and 4.4. The Receiver Operating Chasiiterirve Fig. 1.0 is generated from the 7x7
confusion matrix of Table 1., where True Positives TP wahre 48, 21, 16, 8, 12, 8 and 15 for Walking
(W), Running (R), Boxing (B), Kicking (K), Hand Waiving (HWClapping (C) and Occlusion (O)
respectively. False positive FP and False negative Fdesdbr each True positive are estimated from the
adjourning rows and columns. Each video stream generated itR@n[26] but Statistical Package for
Social Sciences version 15.0 (SPSS) was used in gemeth&reported ROC curves. Similarly, the 3x3
confusion matrix of Table 2. is generated by Figs. 4.5, 4d4a7 where: Trucks(T), Cars(C), and Bikes(B)
in Table 2. have True Positives values 12,13 and 15 respgdtivelehicle motion detection.

o P
Recall = Sensitivity =———— (5.1)
TP+ FN
Specificit —l (5.2)
P = IN+ FP '

Table 1. The confusion matrix of the human motion deteabin

w R B K HW C O %
w 48 0 0 0 0 0 0 100
R 0 21 0 0 0 0 0 100
B 1 0 16 0 0 0 0 94
K 1 0 0 8 0 0 0 88
HW 0 0 0 1 12 0 0 92
C 0 0 0 0 0 8 0 100
O 0 0 0 0 0 0 15 100
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Fig. 4.1. The background model
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Fig. 4.2. Detected moving object (Running) with shadowna foreground
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Fig. 4.3. Detected moving object (Boxing) with shadow arfdreground
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Fig. 4.4. Detected moving object (Clapping) with shadoand foreground
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Fig. 4.5. Detected moving object (Truck) with shadow anftbreground

100 200 300

Fig. 4.6. Detected moving object (Car) with shadow and feground
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Fig. 4.7. Detected moving object (Bike) with shadow and feground

ROC Curve

0.5
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0.2
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1 T T T T
0. 0z 0.4 0.6 0.s 1.0
1 - Specificity

Fig. 1.0. The ROC curve for the human motion detectio
PCC=96.28%; AUC =0.76

Table 2. The confusion matrix of the vehicles motione&tection

T B C
T 12 0 0 100
B 1 13 0 92
C 0 0 15 100

5.2 Shadow removal technique

The performance of any shadow detection and removal technique testdat using two metrics proposed
by [29], namely shadow detection ratg Y and shadow discrimination raté {:

10
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TR
A ———
TR, + FNg (5.3)
e TR
TR + FN: (5.4)

Where TP and FN stand for true positive and false negativés pixéa respectively to either Shadows(S) or
foreground objects (F). The shadow detection rate is coedewxith labeling the maximum number of cast
shadow pixels as shadows. The shadow discrimination rate igroedcwith maintaining the pixels that
belong to the moving object as foreground.

ROC Curve

1.0

0.8+

Sensitivity
=]
T

o
I
1

0.2+

00— T T T
oo 0z 0.4 a5 s 1.0

1 - Specificity

Fig. 2.0. The ROC of the vehicles motion detection
PCC=97.33%; AUC=0.78

Fig. 4.8. Correct vehicle classification with partial shadw removal (HSV suppression only)
PCC=98%; AUC=0.8

11
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Fig. 4.9. Correct human classification and shadows compldyeremoved

5.3 Shadow removal based on shadow position

In most cases, shadow suppression in HSV colour space sffents/e, this method is not reliable when the
background brightness is low or the background has the similamafance with foreground pixels. Once
the brightness of background is low, it is very difficdtdistinguish all the shadows from the background
because its brightness will change a little when shad@wsron the background as shown in Fig. 4.8.
Meanwhile, some pixel points inside the moving object may ibgirelted as shadow points. To overcome
this shortcoming of HSV suppression, this research workoptimally eliminate shadows by combining
HSV suppression with a chromaticity based approach to lgetter performance.

5.4 Shadow removal using the Phong’s Model

The HSV suppression is a chromaticity based method having itssbartcomings as discussed, this work
introduces Phong’s Model to compensate for those shomgamiMostly the chromaticity consistency
constraint used to detect shadows is valid only if the eamibight chromaticity is not different from the
chromaticity of diffuse light. The Phong’'s model exploitsarhaticity consistency and texture consistency
in the outdoor scene. Phong'’s reflection model is a 3D shaglmeval model used in graphics and indoor
shadow detection and removal, this work will remove shadboam the affected video scenes so that the
system will not to wrongly classify the moving shadow as ngbhiaman, human group or vehicle.

5.4.1 Shadow removal experimental results

This research work measured the shadow detection perfoenaamoth stages of implementation, i.e at the
HSV suppression stage and after the Phong's Model stage meathe shadow detection rategy § and

shadow discrimination rate&(), Fig. 4.8 showed the stage of HSV suppression while FigsHowed the
result after Phong’s removal. Table 3.0 showed the shadowtideteate {7 ) and shadow discrimination

rate () at each stage. The result showed an improvement aftergRhhas been employed in shadow
removal.

Table 3. Table showing the discrimination rate and detean rate at each stage of the shadow removal

Shadow detection rate Shadow discrimination rate
HSV 0.48: 0.78¢
HSV & Phong 0.695 0.895

Table 3.1. Comparison of Simulation results of the degined system and Some Existing works

Author Approach Slow start Shadow removal scheme Segmentan
Stauffer Online 7" frame  None Good

and grimson E-M

Kaewtrakulpong L-recent windows 5" frame  Colour consistency Very good
and Bowden

Developed MAP B frame Colour and texture consistency Very good

12
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6 Conclusion

This research work employed the modified adaptive backgrouxtdne model method in detecting human
and vehicular motions in video images, the Maximum A postéii#P) was used to update the Gaussian
to: Detect moving region as Human or Vehicles and remow#oste regions in the video scene optimally
using the combination of HSV suppression and the Phorgtsiilation Model (Chromaticity and Texture
constraints only).

The system performed well in detection of moving imad&is{an or vehicles), but fails when a group of
people are walking or running at the same speed inahe glirection; this type of motion confuses the
system giving this set of people the variance ofreoca truck, the system also classifies moving objects
its view to Human and Vehicles. The system performi iwelassification, creating a bounding boxes on
the target objects correctly even when more that orecoly in its view, The sensitivity of this systerasv
tested against the target presence with percentage o€tcoiassification PCC and the Receiver Operating
Characteristic ROC, which showed that the detection @fimg objects (Human) has PCC of 96.28% and
Area Under Curve AUC 0.76; Vehicle has PCC OF 97.33% an@ A.U8.

The system removed shadows optimally from the video streamghat moving shadows will not be
detected as moving objects. The removal of shadows ateadnphases: HSV suppression and Phong

Reflection model, this approach is novel in that each shadowwva technique has their shortcoming,
combining the colour and texture consistencies removes the shadovalppti
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