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Abstract

The distributions of solar flare energies and waiting times have not been described simultaneously by a single
physical model, yet. In this research, we investigate whether recent avalanche models can describe the distributions
for both the released energies and waiting times of flares in an active region. Flaring events are simulated using the
modified Lu and Hamilton model and also the optimized model. Applying a probability balance equation approach,
we study the statistics of the simulated flaring events and investigate the origin of the observed power law in the
flare frequency-size distribution. The results indicate that the power law originates in the distribution of transition
rates (the distribution of the probabilities of transitions between different energies) rather than the distribution of
the energy of the active region. It is also observed that the waiting-time distribution of simulated flaring events
follows a q-exponential function, which approximates a simple Poisson distribution.

Unified Astronomy Thesaurus concepts: Solar flares (1496); Solar active regions (1974); Solar magnetic fields
(1503); Solar magnetic reconnection (1504)

1. Introduction

Solar flares are triggered by ohmic dissipation of electric
current sheets (magnetic reconnection) in the solar atmosphere
due to evolution of the Sun’s complex magnetic field driven by
emerging, canceling, twisting, and braiding of magnetic fields
(Fletcher et al. 2011; Shibata & Magara 2011; Loureiro &
Uzdensky 2016). The excess magnetic energy stored in the
current sheets channels into heating of coronal plasma,
acceleration of charged particles, generation of shock waves,
wave propagation, and mass ejections (Aschwanden et al.
2017).

Solar flares are observed across the entire electromagnetic
spectrum. Decades of observations indicate that solar flare
energies span almost eight orders of magnitude, between 1025

and 1033 erg (Crosby et al. 1993; Shimizu 1995; Aschwanden
et al. 2000, 2014; Maehara et al. 2015). Regarding previous
studies, the frequency-size distribution of flare energy (E)
follows a power law:

µ g-N E E , 1( ) ( )

where N(E) is the number of events per unit energy and per
unit time, and γ is the power-law index (Wheatland 2001;
Wheatland & Litvinenko 2001; Aschwanden 2011; Fletcher
et al. 2011).

The diversity of reports on observations of the solar flare
waiting-time distribution (WTD) indicates the dependence of
the WTD on factors like the time of the study, the choice of
active region, and also the measure of the magnitude of flares
(Boffetta et al. 1999; Wheatland 2001, 2008; Buchlin et al.
2005). Observed WTDs of flaring events are found to follow
either a simple Poisson or a time-dependent Poisson distribu-
tion. Study of solar flare waiting times over a long period also
manifests a power-law behavior in the tail of the WTD.
Introducing a physical model capable of describing both the
solar flare energies and their waiting times is an important
outstanding problem.

Inspired by the power-law behavior of the flare frequency-
size distribution, which originates in the scale-free and
stochastic nature of these phenomena, the concept of self-
organized criticality and the cellular automaton (CA) approach
are widely applied in modeling solar flares. The underlying
mechanism is described as an avalanche process (Lu &
Hamilton 1991; Lu et al. 1993; Zirker & Cleveland 1993;
Robinson 1994; Isliker et al. 1998, 2000; Boffetta et al. 1999;
Charbonneau et al. 2001; Buchlin et al. 2003; Hughes et al.
2003; Barpi et al. 2007; Morales & Charbonneau 2008;
Strugarek et al. 2014; Farhang et al. 2018). Lu & Hamilton
(1991) presented the first CA model for solar flares (hereafter
the LH model) following the idea of the sandpile model (Bak
et al. 1987).
In the sandpile model, evolution of a discrete vector field is

numerically studied subject to a constant-rate driving. If the
driving mechanism causes an instability in the system the field
is redistributed to locally relax the system. The LH model was
successful in reproducing the power-law distribution for the
size of simulated flaring events.
Other models have also been used to explain the power-law

distribution. Rosner & Vaiana (1978) studied the frequency-
size distributions of various transient sources (e.g., flaring stars)
and perceived that the examined distributions follow a power-
law behavior at high energies, but depart from the power law at
low energies. Rosner & Vaiana constructed a model for flaring
events describing the power-law behavior and the observed
departure. They assumed that the rate of energy storage
(driving rate) is proportional to the energy of the system:
dE/dt=α(E+ E0), where E0 is the ground state energy. This
implies an exponential growth of energy in the system. They
also assumed that flares occur as an uncorrelated process, i.e.,
the WTD of flaring events is a simple Poisson distribution with
a constant flaring rate (λ):

lD = l- DP t e , 2t( ) ( )

where Δt is the time interval between two consecutive flaring
events. With this model, the frequency-size distribution of
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events is:

l
a

= + g-N E
N

T E
E E1 , 30

0
0( ) ( ) ( )

where N0 and T are the total number of flares and total time of
observation, respectively. Equation (3) departs from a power
law for small values of E/E0, and is a simple power law ∼E− γ

for E ? E0. Rosner & Vaiana pointed out that a deviation from
the exponential growth of energy results in a frequency-size
distribution other than a power law.

Wheatland & Glukhov (1998) presented a description of the
energy of an active region in terms of a probability balance
equation (master equation). In the model, flares represent
transitions between energy states. They investigated whether
the power-law flare size distribution originates in the distribu-
tion of the energy of the active region, or comes from a power
law in the transition rates between energies of the active region.
Their numerical analysis showed that an energy-independent
driving rate can result in a power-law frequency-size distribu-
tion for flaring events. The power-law behavior was attributed
to the transition rate function between the energy states. They
argued that this is consistent with the avalanche model. They
also noticed that the WTD of flaring events in the model is
exponential, consistent with the avalanche model.

Here, we aim to study the energy balance in CA avalanche
models, and investigate (1) whether it is possible to calculate
the transition rate in avalanche models, (2) whether the power-
law behavior of flare frequency-size distribution originates in
the transition rate, or reflects the distribution of the system
energy in the avalanche models, and (3) whether avalanche
models in fact have a simple Poisson distribution for the WTD.
In Section 2, we briefly review the CA avalanche models and
the probability balance approach, and in Section 3 we discuss
our numerical analysis and results. Finally, we present our
conclusions in Section 4.

2. Statistical Models

2.1. CA Avalanche Models

As the magnetic field lines and their surrounding plasma
come out of the shearing layer of the tachocline and rise
through the convection zone they become stretched and
twisted. Some of these field lines can break through the surface
of the Sun and create pairs of magnetic footpoints. The slow
and continuous shuffling of magnetic footpoints due to
photospheric motions increases magnetic stress in the coronal
magnetic field. In case of an instability, magnetic reconnection
occurs and the system locally relaxes by abrupt release of
accumulated energy in the solar atmosphere. Each magnetic
reconnection may trigger other instabilities in the system. The
Sun’s atmospheric magnetic field evolves quasi-statically
toward a critical state that produces scale-free and nonlinear
dissipation of energy (Aschwanden et al. 2014).

Lu & Hamilton (1991) established a CA model in order to
simulate solar flaring events as a self-organized critical system.
They designed a discrete 3D grid of nodes, using uniformly
distributed random numbers, where the nodal values represent
the average magnetic field B( ) in each cell. The topological
progression of the magnetic field is considered in the modeling
as the system is subjected to a driving mechanism by adding
one small random increment to a randomly selected node at
each time step. Since the system is stipulated to remain stable,

the stability of the whole system is checked after each driving
step against a criterion:
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where the sum runs over the six nearest neighbors (Bl), and Bc

is a preset threshold. If the instability criterion exceeds the
threshold at a node, the field redistributes as:
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Several types of redistribution rules in various categories
such as isotropic or anisotropic, deterministic or probabilistic,
short-distance or long-distance interactions (involving different
numbers of neighboring cells in the redistribution), and
conservative or nonconservative have been subjected to a wide
range of studies (Moore 1962; Von Neumann 1966;
Upper 1997; Weimar 1998; Jiménez 2013; Strugarek et al.
2014). All redistribution rules in the existing CA models are
ad hoc, and various models are credible.
Recently, the concept of the principle of minimum energy

has been applied in modeling magnetic reconnections (Farhang
et al. 2018; Aschwanden & van Ballegooijen 2018). Farhang
et al. (2018) presented a CA model (hereafter the optimized
model) in which the maximum possible amount of energy is
released at each redistribution. They considered a 2D lattice of
magnetic vector potential field A ,( ) and instead of the local
driving mechanism of the LH model, they applied a global
driving procedure (Strugarek et al. 2014):

= + "+ A A i j1 , , 6i j
t

i j
t

,
1

,( ) ( ) ( )

with the driving rate ò. The instability criterion is defined as:
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where Ac is the instability threshold generated from a Gaussian
distribution, and the sum runs over the four nearest neighbors.
Among all unstable sites, only nodes that could deplete the
maximum possible amount of energy are redistributed as
follows:
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Here r1, r2, and r3 are uniformly distributed random numbers,
a=r1+r2+r3, and x is a free parameter that is determined
using the principle of minimum energy (see Appendix A).
In the conservative anisotropic redistribution rules of

Equation (8), a fraction of the field is subtracted from the

2

The Astrophysical Journal Letters, 883:L20 (7pp), 2019 September 20 Farhang, Wheatland, & Safari



central node and is redistributed to the neighboring cells in
order to maximize the released energy.

Another approach to achieving maximum energy release is
to introduce an isotropic set of redistribution rules:

= -

= +
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which is conservative as well. Equation (9) is the same

as the 2D LH model if = =
x 1,

A

A
i j

c

,∣ ∣
but for x>1 the

amount of decrease in A2 due to the occurrence of each
redistribution, equivalent to the energy loss in the system equal

to 4/ -
z x x5 2 ,c

A

A
2 2i j

c

,( )∣ ∣
is always greater than the LH model

(see Appendix B).

2.2. Probability Balance Approach

The steady state of a system comprised of a continuous range
of possible energy states can be described by a probability
balance equation (Van Kampen 1992; Wheatland & Glukhov
1998; Wheatland 2008):

ò

ò

a

a

+ ¢ ¢

- ¢ ¢ ¢ =
¥

d

dE
EP P E E dE

P E E E dE

,

, 0, 10

E

E

0
( ˙ ) ( )

( ) ( ) ( )

where P(E)dE is the probability of the system having energy in
the interval (E, E+ dE), Ė is the driving rate, and α(E, E′)dE′
is the probability per unit time of the system with energy
E making a transition to a lower energy level in the interval
(E′, E′+ dE′). The first term of the probability balance equation
describes the increase of energy due to driving, the second term
describes the change in energy due to the system falling from
energy E to a lower energy, and the third term describes the
system falling from a higher energy to energy E.

The frequency-size distribution of transitions is:

ò a= ¢ ¢ ¢ - ¢
¥

N E P E E E E dE, , 11
E

( ) ( ) ( ) ( )

and the total occurrence rate of transitions is:

òl a= ¢ ¢E E E dE, . 12
E

0
( ) ( ) ( )

Wheatland (2008) applied this concept to solar flares
occurring in an active region. Equation (12) indicates that in
general the occurrence (flaring) rate depends on the energy (E)
of the system. Therefore, one might think of solar flares as
correlated processes whereas on the contrary, Wheatland &
Litvinenko (2002) assumed that the WTD of solar flares is a
Poisson distribution.

Wheatland (2008) investigated a numerical steady-state
solution to Equation (12) for solar flares, assuming a constant
driving rate Ė . Wheatland also assumed a power-law-like
transition rate:

a a q¢ = - ¢ - ¢ -d g-E E E E E E E E, , 130 0( ) ( ) ( ) ( )

where θ is the step function, and the size of a flaring event (the
released energy) is E−E′�E0. Equation (13) provides the
potential for dependence of the transition rate on the excess

energy of the system through the factor E δ, if d ¹ 0.
Substituting the transition rate of Equation (13) in
Equations (11) and (12) gives:

òa= ¢ ¢ ¢g d-
¥

N E E E P E dE , 14
E

0( ) ( ) ( ) ( )

and

l
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g
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Equation (14) indicates that the flare frequency-size
distribution in the model is a power-law function with index
γ, times the function ò ¢ ¢ ¢d¥

E P E dE .
E

( ) ( )
Equation (15) implies that the total flaring rate λ(E) is a

fluctuation of the energy of the system. This indicates that
WTD will not be a simple exponential (which requires λ= λ0,
a constant). However, the WTD will be approximately
exponential if the system energy E is much greater than the
energy of flares. Specifically, for E? E0 and γ>1
Equation (15) implies:
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and, if E greatly exceeds the flare energies, then »E E,¯ the
average system energy, and

l
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With the same assumptions, we expect P(E) to be a sharply
peaked distribution around the average system energy, i.e.,

d» -P E E E , 18( ) ( ¯) ( )

and then Equation (14) becomes:
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i.e., the frequency-energy distribution for flares is a simple
power law.

3. Analysis and Results

In this section we present a numerical analysis to determine
the frequency-size distribution and also the WTD of flaring
events in recent avalanche models. The dimensionality of the
LH model is reduced by considering a 2D lattice of magnetic
vector potential field A( ) in the cross section of a flaring
magnetic flux tube (Strugarek et al. 2014). The lattice is driven
by adding a uniformly distributed random number to a random
node. The driving (òLH) is slow in the sense that á ñ < ALH

-10 .4 The lattice energy is considered proportional to A2.
After each driving step the stability of the system is checked

against the instability criterion:
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The instability threshold Ac is adopted from a Gaussian
distribution with an average of =A 1,c̄ and FWHM σ=0.01.
In case of an instability, a redistribution takes place and the
system locally relaxes. Each redistribution may lead to other
instabilities in the system. A succession of redistributions is
called an avalanche (flare).
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We present simulations for the optimized model for both
types of redistribution rules described in Section 2: the
anisotropic set of Equation (8) and the isotropic set of
Equation (9). In both cases, a 2D lattice of magnetic vector
potential field A( ) is built up using uniformly distributed
random numbers. For the anisotropic case, the lattice is subject
to the global driving mechanism (Equation (6)). The magnetic
energy of the lattice is calculated using the following
expression:

å= A JE
1

2
. 21· ( )

The isotropic case is developed applying some variations
from the original optimized model. First, the system is subject
to a local driving mechanism instead of global driving.
Moreover, the lattice energy is considered proportional to A2,
in common with the reduced LH model. In the reduced LH
model the stationary state is achieved after nearly 20,000

driving steps, whereas in the optimized model it takes several
million iterations for the system to reach a stationarity state.
The frequency-size distributions of the simulated flares

together with the probability distribution functions (PDFs) of
lattice energies for the reduced LH model and the optimized
model are shown in Figures 1–3. The maximum released
energy (in the left panels) is much smaller than Ē (the location
of the peak in the right panels) over several million iterations of
simulation. This is due to the finite time of simulation.
Specifically, the expected number of events with size greater
than E during the total simulation time T is:

ò> = ¢ ¢
¥

n E T N E dE , 22
E

( ) ( ) ( )

where N(E) is the flare frequency distribution. The value of E at
which n(> E)=1, represents the energy rollover in the system
as a result of the finite time of the simulation. The rollovers
observed in Figures 1–3 correspond to n=1.

Figure 1. Statistics of the simulated flaring events for the reduced LH model. (I) The frequency-size distribution of flaring events together with the result of fitting
Equation (14) on the data. (II) The probability distribution of lattice energies. The location of the peak of P(E) is shown with the red line.

Figure 2. Statistics of the simulated flaring events for the anisotropic optimized model. (I) The frequency-size distribution of flaring events together with the result of
fitting Equation (14) on the data. (II) The probability distribution of lattice energies. The location of the peak of P(E) is shown with the red line.
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In order to calculate the transition rate in the numerical
models, we assume that transition rate depends on the lattice
energies and also released energies according to Equation (13).
Therefore, fitting the right-hand side of Equation (14) to the
frequency-size distributions of individual data sets provides the
transition rate. The goodness of fit is evaluated using the χ2

test. Hence, we apply the genetic algorithm (Cantó & Martínez-
Gómez 2009; Kramer 2017; Farhang et al. 2018) to minimize
the χ2 function with respect to parameters α0, γ, and δ to obtain
their values consistent with our distributions. We also use the
Monte Carlo integration technique to calculate the factor

ò ¢ ¢ ¢d¥
E P E dE

E
( ) ( ) over the lattice energies.

The quasi-normal shape of the PDFs after the system reaches
to the stationary state (right panels in Figures 1–3) is consistent
with Equation (18), and clearly reveals that the distribution of
energy P(E) is not the origin of the power-law frequency
distribution of event energies. This result confirms that the
power-law behavior must originate in the transition rates.

Observations suggest that solar flare WTD in individual
active regions is basically exponential (e.g., Wheatland &
Litvinenko 2002). Also, the study of solar flare waiting times
for the whole Sun, i.e., over many active regions indicates a
power-law behavior in the tail of the WTD (Aschwanden &
McTiernan 2010). Gheibi et al. (2017) discussed the long-term
dependency detected in the system of flares (flare time-series),
which is a key characteristic of complex systems. The WTD of
such systems could be well-described by the q-exponential
PDF (Tsallis & Brigatti 2004; Yalcin et al. 2016):

l

l l

D = -

» - - - D

l- D

-

P t q e

q q t

2

2 1 1 . 23
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Equation (23) is valid in the range D < ¥ t0 for q�1,
otherwise (q< 1) it is only justifiable in the range

D <
l -

 t0
q

1

1( )
(Picoli et al. 2009). The simple exponential

distribution (ordinary exponential distribution λe−λΔ t) is
achieved as q approaches unity. The corresponding cumulative

distribution function of Equation (23) is:

lD = - - D
+ -C t q t1 1 . 24

1 q
1

1( )( ) ( )( ) ( )

The cumulative WTDs are fitted by Equation (24) and the
results are shown in Figure 4. The obtained values for q are
1.00001±0.00001, 1.28±0.02, and 1.00010±0.00001 for
the reduced LH, anisotropic, and isotropic optimized models,
respectively. Expectedly, the WTD for the reduced LH model
is perfectly matched with the simple Poisson distribution. The
results also show that the WTD for the isotropic optimized
model is consistent with the simple Poisson distribution, but the
anisotropic model departs from the simple Poisson form.

4. Conclusion

In this study, the complex evolution of the coronal magnetic
field is considered as a probabilistic combination of energy
states. Namely, it is assumed that the coronal magnetic field
consists of a continuous distribution of energy states, and
transitions can occur between the states at different rates
(due to, e.g., flaring events or a driving mechanism). The
evolution of such a system is described by the probability
balance equation. In this paper we have investigated the energy
balance in CA avalanche models, using the probability balance
equation approach.
To this end, a 2D lattice of magnetic field (magnetic vector

potential field) was constructed representing a cross section of a
typical flaring flux tube within an active region. Uniformly
distributed random numbers were assigned to the nodal values
of the lattice, as a small fraction of the average of the magnetic
vector potential field within each cell. Both the local and the
global driving mechanisms were investigated. The behavior of
the flaring event energies and their waiting times are analyzed
for the reduced LH model and also both types of optimized
model.
Two important questions are addressed here. The first

concerns the flare energies. Does the power-law behavior in the
frequency-size distribution of flaring events originate in the
transition rates between energy states, or it is due to the

Figure 3. Statistics of the simulated flaring events for the isotropic optimized model. (I) The frequency-size distribution of flaring events together with the result of
fitting Equation (14) on the data. (II) The probability distribution of lattice energies. The location of the peak of P(E) is shown with the red line.
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distribution of system energy? To answer this question, the
transition rate was calculated for each avalanche model. The
PDFs for the lattice energies are found to exhibit a quasi-
normal behavior. The results demonstrate that a power-law
distribution for the transition rates can explain the observed
flare frequency-energy distribution. This indicates that the
power-law behavior originates in the distribution of transition
rates rather than the distribution of energy of the active region.

The second question concerns the WTD of flaring events.
Wheatland & Litvinenko (2002) stated that the WTD of the
solar flares could be described by a Poisson distribution. The
question is whether the avalanche models provide the same
result. We investigated the WTD of the simulated flaring
events, applying a q-exponential distribution. The q-exponen-
tial distribution exhibits the same behavior as the simple
Poisson distribution for q=1, which is obtained for the
reduced LH model and also the isotropic optimized model. In
case of the anisotropic optimized model, the obtained value for
q shows some deviation from unity. These results indicate that
the WTD of flaring events in the avalanche models can be a
simple Poisson distribution, or it may be more complex.

In the next logical step, our interest is to examine the
mentioned models for the observational total magnetic energy
of active regions and flare energies using recent data recorded
by, e.g., the Atmospheric Imaging Assembly and Helioseismic
and Magnetic Imager on board the Solar Dynamics Observa-
tory. This could help us determine a more physical avalanche
model.

Appendix A
Optimization of the Released Energy for the anisotropic

Model

In order to determine the value of x in Equation (8), which
maximizes the amount of released energy, the first derivative of
the energy difference between two consecutive driving steps,

-+E E ,n n1 is calculated. Considering the energy of the system

as = å A JE ,1

2
· and also assuming that the released energy

during a redistribution depends on the nodal values of all 13
neighboring cells (Farhang et al. 2018, Figure 1 therein), x is
determined by solving:
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where the nondimensional electric current density is:

  = ´ = ´ ´J B A . 26( ) ( )

The magnetic vector potential is defined as =A A x y z, ,( ) ˆ
hence  =A 0,· and we have:

= -
¶
¶

+
¶
¶

J A
x y

. 27
2

2

2

2

⎛
⎝⎜

⎞
⎠⎟ ( )

Applying a centered difference approximation, the vertical
component of the nondimensional electric current density is:

= - - - -+ - + -J A A A A A4 . 28z i j i j i j i j i j i j, , 1, 1, , 1 , 1∣ ( )

Figure 4. Cumulative waiting-time distributions for the reduced LH model (I), the anisotropic optimized model (II), and the isotropic optimized model (III),
respectively. The red line in each panel represents the cumulative q-exponential distribution of Equation (24). The obtained values for q are 1.00001±0.00001,
1.28±0.02, and 1.00010±0.00001, respectively.
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After some calculations:
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which leads to:

=
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Appendix B
Optimization of the Released Energy for the Isotropic

Model

In the isotropic optimized model the lattice energy is
considered proportional to åA .2 Therefore, the released energy
depends on the nodal values of the five cells involved in the
redistribution. Following the same procedure in Appendix A
the value of x in Equation (9), satisfying the maximum energy
release constraint, is determined by solving:

¶ -
¶
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where = J A4 .i j
n

i j, , Equation (31) gives:

=


x
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A
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