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ABSTRACT 
 

An epidemiological model with existence of disease and pollutant has been proposed and 
analyzed, the formulation of the model is described and the uniqueness and boundness of solution 
of the system are discussed. The stability analysis of the non-negative equilibrium points is 
performed. Finally numerical simulation is used to show that increasing the values of  external 
disease transmit ion rate and rates at which the susceptible, infected and recovered individuals 
decreasing due to the toxicant in proposed model, the population will die out. 
 

 
Keywords: Epidemic model; equilibrium; stability analysis; toxicant. 
 
1. INTRODUCTION 
 
Infectious disease like, influenza, bird flu…etc, 
and pollutants like oxides of sculpture or oxides 
of carbon, are the world’s leading killer. There 
are many sources to spread the disease among 
the population. One of the most ways to spread 

infectious disease is by contact between the 
susceptible and infected individual. Moreover 
many diseases are transmitted in the species not 
only through contact, but also directly from 
environment (for example several air-borne 
diseases such as, influenza, bird f, etc). On the 
other hand Pollutants may be emitted into the 
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environment from different sources (e.g. 
vehicles, thermal power plant, industries, 
refineries, etc.) as well as by the incessant use of 
natural resources without recharging and 
cleaning them. There are many attempt for 
describing spread infectious disease among 
population see [1-4] as well as, in the recent 
decades, several investigators have proposed 
and analyzed mathematical models to study the 
effects of toxicants on biological species [5-16]. 
In particular, Hallam et al. [17,18] have proposed 
and analyzed mathematical models to study the 
effects of toxicants on biological species when 
these are emitted into the environment from 
external sources. Hauping and Zhien [9] have 
proposed a mathematical model to study the 
effect of a toxicant on natural stable two species 
communities. In this paper, we proposed and 
analyzed a mathematical model that describe the 
spread of infectious disease by two transmission 
ways under the effect of toxicant on entire 
population. 
 
2. THE MODEL 
 
Consider an epidemiological system under the 
following assumptions 
 

1. The population has SIR epidemic disease 
that divide the population in to three 
classes namely susceptible ���� ≥ 0 , 
infected ���� ≥ 0  and recovered ���� ≥ 0 . 
Further it is assumed the whole population 
can reproduce only susceptible logistically 
with intrinsic growth rate 	 > 0  and 
charring capacity� > 0. 

2. The disease is transmitted from infected 
individuals to susceptible individuals by 
contact according to non-linear incidence 

rate of the form ��
���. 

Further, it is assumed that the disease                
is also transmitted to susceptible 
individuals by an external source                       
with external rate � > 0 . However the 
infected individuals may recover and 
become unsusceptible with recover 
rate� > 0. 

3. It is assumed that there are toxicants 
(pollutants) in the environment which affect 
negatively on the growth of the whole 
population (susceptible, infected and 
recovered). Therefore, if it is assumed 
that, )(tW  is the toxicant concentration in 
the whole population at time t ; )(tZ  is the 
environment concentration of toxicant at 
time t . Consequently, the dynamics of the  

epidemic described in above assumptions  
in a polluted environment can be 
described by the following set of 
equations: 

 ��
�� = 	�� + � + �� �1 − �� + � + ��

� � − ���
1 + � − �� − ���� 

 ��
�� = ���

1 + � + �� − �� + ���� − ����          
  !

 " = �� − ��� − �#��                                           (1) 

 �$
�� = π− %$�� + � + �� − ��$                     

 ��
�� = %$�� + � + �� − �#�                         

 
Where  S�0�, I�0�, R�0�, Z�0�and W�0�  are non 
negative. 
 
Here,  /� > 0  is natural death rate of infected as 
well recovered individuals; ��, �� and �#  are 
positive rate at which the susceptible, infected 
and recovered individuals decreasing due to the 
toxicant; % is uptake rate of the toxicant by 
organism  ; 1 > 0 is the exogenous input rate of 
toxicant in the environment; ��  is the natural 
depletion of the environmental toxicant and �# is 
the natural washout rate of the toxicant from the 
organism. In addition, since the density of 
population cannot be negative then the state 
space of the system is  
 

{ ,0:),,,,( 55 ≥∈=+ SRWZRISR  
 

}0,0,0,0 ≥≥≥≥ WZRI . 
 
Obviously the right side of the system (1) are 
continuous functions of  S,I,R,Z and W and have 
continuous partial derivatives on the state space

5
+R , therefore these functions are Lipschizian on 
5
+R  and then the solution of the system with non 

negative initial condition exists and is unique. In 
addition, all the solutions of the system which 
initiate in the above state space are uniformly 
bounded as shown in the following theorem.  
 
Theorem (1)  
 
All the solutions of the system (1) that initiate in 

the state space 
5
+R  are uniformly bounded. 
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Proof.  Let  ( ))(,)(),(),(),( tWtZtRtItS  be any 
solution of the system with the non-negative 
initial conditions. From the first three equations it 
is obtained that 
 ��� + � + ��

�� ≤ 	�� + � + �� �1 − �� + � + ��
� � 

 
Then by solving the above differential inequality, 
it is obtained that lim"→∞ �/7�� + � + �� < �. 
from the last two equations of the system it is 
obtained that 

         ��$ + ��
�� = π − ��$ −  �#�   

 
Then   
 ��$ + ��

�� < π − ��$ + ��  
 

Here
{ }32 ,min µµµ =

. So again by solving the 
above linear differential inequality, it is obtained 
that  lim"→∞ �/7�$ + �� < 9

: .  Hence all solutions 

are uniformly bounded and the proof is complete. 
             
3. EQUILIBRIUM POINTS AND LOCAL 

STABILITY 
 
In this section, the stability analysis of each 
equilibrium of the system (1) is carried out by 
using the linearization method with the help of 
Routh-Huritiz criterion or Lyapunov function. The 
proposed system may have two equilibrium point 
the population free equilibrium point ;� =
<0,0,0, 9

:= , 0>   and the endemic equilibrium 

point;� = ��,? �,? �@, $@@@, �? � , where �,? � ,? � ? , $̅  and �?  
are positive solution of the following non linear 
system 
 

	�� + � + �� �1 − �� + � + ��
� � − ���

1 + � − �� − ���� = 0 

 ���
1 + � + �� − �� + ���� − ���� = 0 

 �� − ��� − �#�� = 0 
 π − %$�� + � + �� − ��$ = 0 
 %$�� + � + �� − �#� = 0 

 
The Jacobean matrix for the system at the point  

1E  is written as  























−
−−−−

−
−−

−

=

3

2

1

1

1

0

0

000

000

00

)(

222

222

µτττ
µτττ

µα
αµ

µ
π

µ
π

µ
π

µ
π

µ
π

µ
π

m

rrmr

EV    (2)                                               

 
The eigenvalues of the matrix (2) are the roots of 
the equation (3) 
 
( )( ) )3(0)( 32

2
1

3
32 =+++++ DDD λλλµλµλ     

 
Where  
 C� = 2�� + � + � − 	                                              
 C� = 2���� − 	� + �� − 	�� + ��� + ��� − 	� 
 C# = ����� + ���� − 	� − 	���� + ��                
 
Consequently, the local stability conditions of the 

first predator free equilibrium point 1E  are 

established in the following theorem.  
 
Theorem (2):  
 

The population free equilibrium point 1E  of the 
system (1) is locally asymptotically stable in the 

5. +RInt   provided that 
 2�� + � + � > 	                                                            �4� 
 ����� + ���� − 	� > 	���� + ��                            �5� 
 C�C� > C#                                                                        �6� 
 
Proof. It is well known that the equilibrium point 

1E  is locally asymptotically stable if and only if all 

the eigenvalues of )( 1EV  have negative real 
parts. Therefore, from the characteristic equation 
given by Eq (3). It is clear that the eigenvalue in 

the −Z direction and −W direction are −��   
and −�# , respectively. Which are negative 
However all the other eigenvalues, which 
represent the roots of the second part of Eq (3), 

have negative real parts if and only if 01 >D , 
03 >D  and 0321 >− DDD , (using Routh-Hurwitz 

criterion). Straight forward computation shows 
that conditions (4-6) guarantee that 01 >D , 

03 >D  and 0321 >− DDD . Consequently, all the 
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eigenvalues of )( 1EV  have negative real parts 
under the given conditions and hence the 

equilibrium point 1E  is locally asymptotically 
stable.   
 
Now the local stability of the endemic equilibrium 
point ;� = ��,? �,? �@, $@@@, �? � of system (1) is 
discussed below. 
 
The Variation matrix of system at the ;� =��,? �,? �@, $@@@, �? � can be written as follows 
 
H�;�� = IJKLMN×N  
 
Where 
 

 J�� = 	 <1 − ���̅���̅!@�
P > − �̅

���̅ − ��Q? − �,      

 J�� = 	 <1 − ���̅���̅!@�
P > − �̅̅

����̅�=,      

  J�# = 	 <1 − ���̅��̅�!@�
P > J�R = J�# = J�R = J#� =

J#R = JRN = 0 ,   J�N = −���̅ ,   J�� = �̅
���̅ + � ,   

J�� = �̅̅
����̅�= − �� − � − ���? J�N = −��� ̅ , J#� = � , 

J## = −��� + �#�? � , J#N = −�#�@ , JR� = JR� =JR# = −�R$̅ , JRR = −�� − �R��̅ + � ̅ + �@� , JN� =JN� = JN# = �R$̅, JNR = �R��̅ + � ̅ + �@�  
and    JNN = −�# 
 
Consequently, the local stability conditions of the 
endemic equilibrium point  ;� are established in 

the following theorem.  
 
Theorem (3):  
 
Assume that the positive equilibrium point ;� = ��,? �,? �@, $@@@, �? � of the system (1) exists. Then 

it is locally asymptotically stable in the 
4. +RInt  

provided that 
 

	 �1 − 2��̅ + � ̅ + �@�
� � < ��̅

1 + �̅ + Q? + �                  �7� 

 

��̅̅
�1 + ��̅� < �� + � + ��� @@@@                                           �8� 

 

IJKL + JLKM� < �
R JKKJLL     UV	 WXX Y, Z  W[�  Y ≠ Z       (9) 

 

SS ≥ , II ≥ , RR ≥ , ZZ ≥  and � ≥ �?  (10) 

Proof. It is easy to verify that the linearized 
system of the system (1) can be written as 
 

UEV
dt

dU

dt

dX
)( 2==

  
 

here ( )TWZRISX ,,,,=  and 

( )TuuuuuU 54321 ,,,,=  with SSu −=1 , 

IIu −=2 , 
RRu −=3 , ZZu −=4  and /N = � − �?   

 
Now, consider the following function  
 

22222

2
5

2
4

2
3

2
2

2
1 uuuuu

V ++++=
 

 

Note that RRV →+
5:  is a continuously 

differentiable function that satisfies that 
 

0)0,0,0,0,0( =V  and 
0),,,,( 54321 ≠uuuuuV

 

for all 
)0,0,0,0,0(),,,( 4321 ≠uuuu

 
 
Hence V  is a positive definite function. Now,                      
by differentiating V  with respect to time t , it 
gives 
 �H
�� = /�

�/��� + /�
�/��� + /#

�/#�� + /R
�/R�� + /N

�/N��  

 

Substituting the values of 
5,4,3,2,1; =i

dt

dui

 in the 
above equation, and after doing some algebraic 
manipulation; we get that: 
  

�H
�� = ] ] ^1

4 JKK/KK� + IJKL + JKLM/K/L + 1
4 JLL/LL� _

N

L`K��

R

K`�
 

 
So according to the given conditions (7-10), it is 
obtained that 
 
 
 a
 " < 0,   Therefore the origin and then ;� =

��,? �,? �@, $@@@, �? �  is a locally asymptotically stable 

point in the 
5. +RInt  and hence the proof is 

complete. 
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4. NUMERICAL SIMULATIONS 
 
In this section, the dynamics of the system (1) is 
investigated numerically to confirm the analytical 
results system. For the following set of 
hypothetical, biologically feasible, set of 
parameters, definitely different set of hypothetical 

parameters can be chosen. The system is solved 
numerically starting at different initial points as 
illustrated in Fig. 1. 
 	 = 1, � = 50, � = 0.7 �� = 0.6 , �� = 0.5, �# = 0.7 � = 0.5 �� =  �� =   �# = 0.1, 1 = 5,   � = 2,   % = 0.9                                                             (11)  

 

  
 

Fig. 1. The solution of system (1) approaches asymptotically the positive equilibrium point de = �f. fggh, i. jhhk, l. fkkl, i. mieh, k. nmje� For the data given by Eq. (11) starting from two 
different initial points �i. l, l. h, l. h, l, l. h�  and �li, li, li, li, li�. 

 
Note that it is easy to verify that the data of Fig. 1 Satisfy the stability conditions (7-10), and hence the 
above figure confirms the analytical results. Further, it is observed that for the above set of data, with  � = 2, �� = 0.5, �� = 0.6, �# = 0.5,  the solution of system (1) approaches asymptotically to 
population free   equilibrium point ;� = �0,0,0,10,0� as shown in Fig. 2.   

  

  
 

Fig. 2. The solution of the system (1) approaches asymptotically the population free 
equilibrium point de = �i, i, i, li, i� for the data given by Eq. (11) witho = e, pl = i. h, pe = i. k,pf = i. h 
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Note that it is easy to verify that the data of Fig. 2 
Satisfy the stability conditions (4-6), and                
hence the above figure confirms the analytical 
results. “Increasing the values of external 
transmition rate and rate at which the 
susceptible, infected and recovered individuals 
decreasing due to the toxicant, the population will 
die out”. 
 
5. DISCUSSION AND CONCLUSIONS 
 
In this paper, an epidemiological model, with an 
SIR  epidemic disease in the population, is 
proposed and analyzed. It is assumed that the 
disease is transmitted through two ways, contact 
and an external factor, in addition there are 
toxicants (pollutants) in the environment which 
affect negatively on the growth of the whole  
population (susceptible, infected and recovered). 
The uniqueness and boundness of solution of the 
system (1) are discussed. The existence of all 
possible equilibrium points is investigated. The 
local stability analyses for the proposed system 
are performed. Moreover, in order to confirm our 
analytical results and specify which combination 
of parameters control the dynamical behaviour of 
system numerical simulations are used for a 
biologically feasible set of hypothetical 
parameters. For the set of data given by Eq. (11), 
and increasing the values of external transmit ion 
rate and rate at which the susceptible, infected 
and recovered individuals decreasing due to the 
toxicant, the population will remain and does not 
die out. 
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