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Abstract 
 

The dynamic behaviour of a simply supported rectangular plate moving with non-uniform velocities is 
investigated in this paper. The inertia and gravity effects of the moving load are taken into consideration. 
In order to solve the governing fourth order partial differential equation, a technique based on two-
dimensional finite Fourier sine integral transformations, modification of Struble’s asymptotic technique 
and Fresnel sine and Fresnel cosine identities were used.  
The closed form solutions are obtained and numerical analyses in plotted curves are presented. The 

results show that as the foundation stiffness  and other structural parameters increases, the response 
amplitude of the simply supported rectangular plate resting on Pasternak foundation decreases. It is also 

shown that for fixed  value of foundation stiffness , axial force , shear modulus and rotatory inertia 

correction factor , the transverse deflections of the rectangular plate under the action of moving 
distributed masses are higher than those when only force effects of the moving load is considered. This 
implies that resonance is reached earlier in moving partially distributed mass problem than in moving 
distributed force problem. 
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1 Introduction  
 
Rectangular plates as the common structural components have been extremely used in various engineering 
fields such as aerospace, military and marine industries. Such structures are constantly acted upon by 
moving loads; hence, the problem of analyzing the dynamic response of elastic structures under the action of 
moving load continues to motivate a variety of investigations [1-6]. The behaviour of plate structures under 
moving load, in general, is rather complex especially when the inertia effect of the moving loads is taken 
into consideration [7]. Thus, most of the research works available in literature are those in which the effect 
has been neglected. This is due, at least in part, to the great amount of computational labour, which is 
required both to set up and to solve the necessary equations. One important problem that arises when inertia 
effects of the loads are considered is the singularity which occurs in the inertia terms of the governing 
differential equation of motion. Generally, the dynamical problems of plate structures under moving load 
and resting on foundations are complex. The complexity increases if the velocities at which the load moves 
along the span of the structures are no more constant but a variable function of time. Among the earliest 
researchers into this subject was Holl [8] who solved the problem of a rectangular plate carrying uniformly 
moving loads. He concluded that a critical velocity existed for each mode of vibration. Livesly [9] on the 
other hand, considered the problem of a uniformly travelling load on an infinite plate and showed that there 
exists a certain critical velocity, beyond which stresses and deflections become infinite. However, in these 
studies, the plate considered were idealized by one where mass is approximately neglected. Much later 
Stanisic et al. [10] studied the problem of a simply supported non-Mindlin plate under a Multi-masses 
moving system and made use of approximation of Dirac delta function and obtained in series form a closed 
form solution of the dynamical problem. For a plate structure, without an elastic foundation, Willis [11] used 
the finite element method to study the dynamical response under moving loads. He examined the effects of 
eccentricity, span length, acceleration and initial velocity of the moving load. Furthermore, the differential 
quadrature method was shown by Ming-Hung Hsu [12] as an efficient way of obtaining accurate solutions to 
the problem of rectangular plate resting on an elastic foundation and carrying any number of sprung masses. 
There was an excellent agreement between the method and known solutions published in literature. 
Similarly, the problem of non-linear transient dynamic response of clamped rectangular plate on two-
parameter foundations was tackled by Civalek et al. [13] using the algorithm of singular convolution. In 
particular, the problem was discretized in space and time domain using discrete singular convolution (DSC) 
and harmonic differential quadrature (HDQ) methods respectively. The response to moving concentrated 
masses of elastic plates on a non-Winkler foundation was later taken up by Gbadeyan and Oni [14]. Very 
recently, Dongyan et al. [15] use an improved Fourier series method to study free and forced vibration 
characteristics of moderately thick laminated composite rectangular plates on elastic foundation with 
uniform and multipoint supports. In all these previous works on the response of plates to moving load, the 
loads are taken to be moving with constant speed. The more practical cases when the velocities at which 
these loads move are no longer constants, but vary with time have received little attention in literature. This 
may be as result of the complex space-time dependencies inherent in such problems. Specifically, even when 
the inertia effects of the moving load is neglected, analytical solutions involving integral transforms are both 
intractable and cumbersome [16]. However, such practical problems as acceleration and breaking of 
automobile on roadways and highway bridges, taking off and landing of air-crafts on runway and breaking 
and acceleration forces in the calculation of rails and railways bridges in which the motion is not uniform, 
but a function of time have intensified the need for the study of the behaviour of structures under the action 
of loads moving with variable velocities. This class of problem was first taken by Lowan [17] who solved 
the problem of transverse oscillations of beams under the action of moving variable loads. Much later, 
Kokhmanyuk and Filippov [18] treated the dynamic effects on the transverse motion of a uniform beam of a 
load moving at variable speed. Recently, the transverse and longitudinal vibration analysis of thin 
rectangular plate subjected to a variable velocity moving along an arbitrary trajectory using a new finite 
element method procedure was studied by Ismail [19]. The technique was applied in a simply supported 
beam-plate structure under a moving load and intensive analysis and simulations were conducted at different 
dimensionless mass rates. In a more recent development, Ismail [20] studied the transverse and lateral 
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vibration analysis of thin beam under a mass moving with a variable acceleration using a modified finite 
element method. It is remarked at this juncture, that all the above investigations are very impressive, 
however only numerical simulation techniques have been employed. Nevertheless, analytical solution is 
desirable as it often shed more light on some vital information in the vibrating system. In addition to the 
above, the load in this dynamical system is modeled as distributed load which is a more accurate 
representation of load models and the foundation is that of Pasternak generally regarded as the preferred 
alternative.  
 

2 Problem Formulation 
 
The dynamic transverse displacement  of the mid-surface of a prestressed isotropic rectangular 

plate resting on bi-parametric Vlasov foundation moving at variable velocity and carrying partially 
distributed load according to the two-dimensional theory [6] of flexural motions of elastic plate 
incorporating rotatory inertia correction factor is found by solving 
 

     (1) 

 

 
 

Fig. 1. Isotropic rectangular plate element 
 

where is the young modulus, is the Poisson’s ratio , is the mass of the plate per unit length, 

is the position coordinate in x-direction, y is the position coordinate in y-direction, is the time, is the 

plate thickness, is the foundation stiffness, is the shear modulus and is the measure of rotatory 

inertia, is the two-dimensional Laplacian operator, is the bending rigidity of the plate and 

is constant throughout the plane. The inertia effect of the mass of the partially distributed load on the 

transverse response of the rectangular plate is considered and the load  takes the form 

 

     

            (2)  

 

where  is the continuous moving force which travels from point on the plate along a 

straight line parallel to the x-axis with non-uniform velocity   Thus the takes the form 

 

                 (3) 
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                 (4) 

 

g is the acceleration due to gravity and  is the convective acceleration operator defined  as 

 

(5) 

 
M is the distributed mass and is the Heaviside function, and  are the initial positions in the 

and directions respectively. The time is assumed to be limited to that interval of time within the mass of 

the plate, that is  

 
                                                                                                                                         (6) 

 
Thus, in view of equations (2), (3), (4) and (5), equation (1) can be written as 

 

(7) 

 
Equation (8) is the fourth order partial differential equation governing the flexural motion of a prestressed 
isotropic rectangular plate on bi-parametric Vlasov foundation under the action of uniform partially 
distributed loads moving at non-uniform velocity. The rectangular plate being considered has Equation (8) is 
the fourth order partial differential equation governing the flexural motion of a prestressed isotropic 
rectangular plate on bi-parametric Vlasov foundation under the action of uniform partially distributed loads 

moving at non-uniform spans  in the direction of the axis and  in the direction of the axis and is 

simply supported. Accordingly, the pertinent boundary conditions for  and  are  

 

                 (8) 

 

and for , are 

 

     

            (9) 

 
The initial conditions are taken to be without any loss of generality. 
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3 Solution Procedures 
 
The equation of equation (7) will be obtained by applying 
 

                                  

(11) 

 
with the inverse 
 

 

                                         (12) 

 
Applying the generalized two-dimensional integral transforms (11), equation (7) can be written as 
 

   (13) 

 
where 
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                                                                   (19) 
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And 
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For all pertinent boundary conditions, .It is recalled that the equation of the free vibration 

of a rectangular plate is given by 
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Substituting 
 

              (28) 

 

into the homogeneous part of the equation of the free vibration of the rectangular plate (27), where is 

the natural circular frequency of a rectangular plate, we obtain 
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It is well known that for a simply supported rectangular plate,  is given by  
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Equation (29) implies 
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and 

                            (40) 

 
In what follows, we seek to evaluate integral (20) and note that 
 

(41) 

 
In view of (39) the integral (21), can be written as 
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                                           (49) 
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In evaluating the integrals (47)-(49), one takes into account the following orthogonality relations; 
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where 

                 (60) 

 

                  (61) 

 

                                       (62) 

 

                                        (63) 

 

                                        (64) 

 
Substituting the above results into equation (13), after some rearrangement, one obtains 
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  (65) 

 
Where 
 

                                       (66) 

 
Equation (65) is now the fundamental equation of our problem when the isotropic rectangular plate has 
simple supports at all its edges. Next, we shall consider two cases of the equation. 
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3.1 Simply supported rectangular plate traversed by moving distributed force 
 
The moving distributed force model of the simply supported rectangular plate is obtained by setting 

in equation (65). In this case, equation (65) reduces to  
 

        (67) 

 

This is an approximate model which assumes the inertia effect of the moving distributed mass as negligible. 
Thus equation (67) after some rearrangement can be written as 
 

                                           (68) 

 

where 

                                      (69) 

and 

                           (70) 

 

Solving equation (68) using variation of parameters method in conjunction with Fresnel sine and cosine 
identities and the initial conditions (10), one obtains 
 

 (71) 
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Equation (71) is the transverse displacement response to travelling distributed forces moving at variable 
velocities of a simply supported isotropic rectangular plate with rotatory inertia correction factor resting on a 
non-Winkler type elastic foundation. 
 

3.2 Simply supported rectangular plate traversed by moving distributed mass 
 
In this section, the mass of the moving load is commensurable with that of the structure and the inertia effect 

of the moving mass is not considered negligible. Thus, and the solution to the entire equation (65) 

when no term of the coupled differential equation is neglected, is required. This is termed the moving mass 
problem. Thus, in view of the homogeneous part of equation (67), equation (65) can now be written as 
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  (72) 

 
 
where 
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(76) 

 

                            (77) 

 

                           

(78) 

 
Next, we seek the modified frequency corresponding to the frequency of the free system due to the presence 
of the moving distributed mass. An equivalent free system operator defined by the modified frequency then 

replaces equation (72). To this end, we set the right hand of (72) to zero and consider a parameter for 

any arbitrary mass ratio defined as 

 

                                (79) 

 
Evidently, 
 

                                                        
(80) 

 
which to order one gives 
 

                                (81) 

 
Now 
 

                                                     (82) 

 
A case corresponding to the case in which the inertia effect of the mass of the system is regarded as 

negligible is obtained when we set  in equation (72). In such a case, the solution to (72) can be 

written in the form 
 
Whenever 
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Therefore 
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(85) 

 

           (86) 

 
A case corresponding to the case in which the inertia effect of the mass of the system is regarded as 

negligible is obtained when we set  in equation (72). In such a case, the solution to (72) can be 

written in the form 
 

                                                                                             (87) 

 

where and are constants.  

   

 Furthermore for any arbitrary mass ratio there is always , the Struble’s technique requires that the 

solution of the homogeneous part of equation (72) be written in an asymptotic form, namely 
 

                                         (88) 

 
In order to obtain the modified frequency, equation (88) and its derivatives are substituted into the 
homogeneous part of equation (72). Therefore, we extract only the variational part of the equations 

describing the behaviour of and during the motion of the distributed mass. The 

modified frequency is then obtained from these variational equations. Thus, substituting (88) and its 
derivatives into the homogeneous part of equation (72) and taking into account equation (81) and retaining 

terms to , one obtains 
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       (90) 

 
Neglecting terms that do not contribute to the variational equations, equation (89) reduces to 
 

       (91) 

 

Equating the coefficients of the  and  to zero in equation (91), 

we obtain 
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respectively as the variational equations of the problem  describing the behaviour of and 

where 
 

                                (94) 

 

                                (95) 

 

                           (96) 

 

                                                     (97) 

 
    

     tkjtatctxntkjt

atctxn
n

tkjt
n

atctxn

SMFSMF

SMF

,,)12(cos,,

)12(cos
)12(2

1
,,cos

12

)12cos(

2

2

1
0

2

2

1
0

2

2

1
0
















 
    

     tkjtatctxntkjt

atctxn
n

tkjt
n

atctxn

SMFSMF

SMF

,,)12(sin,,

)12(sin
)12(2

1
,,sin

12

)12cos(

2

2
1

0

2

2
1

0

2

2
1

0
















      

     tkjtatctxntkjt

atctxn
n

tkjt
n

atctxn

SMFSMF

SMF

,,)12(cos,,

)12(cos
)12(2

1
,,sin

12

)12sin(

2
2
1

0

2
2
1

0

2
2
1

0
















      

     tkjtatctxntkjt

atctxn
n

tkjt
n

atctxn

SMFSMF

SMF

,,)12(sin,,

)12(sin
)12(2

1
,,cos

12

)12sin(

2
2
1

0

2
2
1

0

2
2
1

0
















       

  

  tkjt
m

ym
kZmk

LLL

Q

tkjt
m

ym
kZm

tkjttkjDtkjttkjtkjD

SMF
M

SMF

SMFSMF

tkjD

tkjDk
L

j

L

yLj

Q

c

m

xyxSMF

mxxM

SMF

,,cos
12

)12cos(
)()12(

216

,,cos
12

)12cos(
)()12(

,,sin),,(2,,cos,,),,(2

),,(

),,(
416

0

0
1

2
0
1

0

0
1

2
222220

1



























 


































  tkjtCos SMF ,,    tkjtSin SMF ,, 

 


















 0),(

2

1

16
),(

4

1
),(,,2 001

0
1 ym

LL
ymLjtkj BAQ

yx

SMFSMF  

  0,,2 


tkjDSMF


),,( tkjD


),,( tkj

M

Q
Q

1


x

y

L

Ljc
Lj

222

1
),(


 









0

0
1

2
22

0
12

)12cos(
)()12(),(

mx

A
m

ym
kZmk

L

j
ym




  







0

0
1

2
0

12

)12cos(
)()12(,

m
xB

m

ym
kZmkLym






 
 
 

Oni and Ogunbamike; JAMCS, 27(4): 1-25, 2018; Article no.JAMCS.42037 
 
 
 

18 
 
 

                           (98) 

and 

                               (99) 

 

                        (100) 

 
which after some rearrangement leads to 
 

                                          (101) 

 
where 

                         (102) 

 
 represent the modified natural frequency representing the frequency of the free system due to the presence 
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modified frequency . Thus, neglecting terms of  , the homogeneous part of equation (72) can 

be written as 
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which represents the transverse displacement response to travelling partially distributed masses moving at 
variable velocities of a simply supported isotropic rectangular plate resting on bi-parametric elastic 
foundation. 
 

4 Discussion of the Analytical Solutions 
 
It is important to establish conditions under which resonance occurs, since the deflection of an elastic plate 
may grow without bound. Equation (71) shows that the simply supported isotropic rectangular plate resting 
on Pasternak elastic foundation and traversed by moving distributed force reaches the state of resonance 
whenever 
 

               (106) 

 
while equation (105) indicates that the same plate under the action of moving distributed mass will 
experience resonance effect whenever 
 

               (107) 

 
Evidently, 
 

        (108) 

 
Equations (106) and (107) show that for the same natural frequency, the critical velocity for the system 
consisting of a simply supported isotropic rectangular plate resting on an elastic foundation and traversed by 
partially distributed moving forces moving with non-uniform velocity is greater than that of the moving 
mass problem. Hence, for the same natural frequency, resonance is reached earlier in the moving distributed 
mass system than in the moving distributed force system.  
 

5 Results and Discussion 
 
In order to illustrate the foregoing analysis, an isotropic rectangular plate of lengths and 

along is considered. The mass per unit length , modulus of elasticity

, moment of inertia , the plate thickness  and 

bending rigidity is considered. The values of foundation stiffness K is varied between and

, the values of axial forces and varied between  and , the shear modulus 

G is varied between and . In Fig. 2, the transverse displacement response of a simply 
supported isotropic rectangular plate under the action of partially distributed forces moving at variable 

velocity for various values of foundation stiffness K and fixed values of axial force , shear 

modulus and rotatory inertia correction factor . The figure shows that as the 
foundation stiffness increases, the response amplitude of the rectangular plate decreases. Similar results are 
obtained when the simply supported plate is subjected to partially distributed masses travelling at variable 
velocity as shown in Fig. 6. For various travelling time t, the deflection profile of the rectangular plate for 
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various values of axial force and for fixed values of foundation stiffness ,  and 

rotatory inertia correction factor is shown in Fig. 3. It is observed that higher values of axial force

reduce the deflection profile of the vibrating plate. The same behaviour characterizes the deflection of 

simply supported rectangular plate under the action of distributed masses moving at variable velocity for 

various values of axial force  as shown in Fig. 7. Also Fig. 4 depict the transverse displacement 

response of simply supported rectangular plate to partially distributed forces travelling at variable velocity 
for various values of shear modulus G and for fixed values of foundation stiffness , axial force 

 
and rotatory inertia correction factor . The figures clearly show that the response 

amplitude of the simply supported isotropic rectangular plate under the action of partially distributed forces 
travelling at variable velocity decrease with increase in the values of shear modulus G. Similar results are 
obtained when the simply supported isotropic rectangular plate subjected to a partially distributed masses 
travelling at variable velocity as shown in Fig. 8. Fig. 5 shows that for various values of rotatory inertia 

correction factor and fixed values of foundation stiffness , axial force and 

shear modulus , higher values of rotatory inertia correction factor reduce the deflection profile 
of the vibrating plate of simply supported rectangular plate to partially distributed forces travelling at 
variable velocity. The same behaviour characterizes the deflection profile of the simply supported 
rectangular plate under the action of partially distributed masses moving at variable velocity for various 

values of rotatory inertia correction factor  as shown in Fig. 9. Furthermore, Fig. 10 shows the 
comparison of the transverse response of moving force and moving mass cases for simply supported 
rectangular plate traversed by a moving load travelling at variable velocity for fixed values of foundation 

stiffness , axial force , shear modulus and rotatory inertia 

correction factor . 

 

 
 

Fig. 2. Transverse displacement of a simply supported rectangular plate under partially  

distributed forces for various values of K and fixed values of ,  

and  
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Fig. 3. Deflection profile of a simply supported rectangular plate under partially distributed force for 

various values of axial force and for fixed values of ,  and  

 

 
 

Fig. 4. Response amplitude of simply supported rectangular plate to partially distributed force for 

various values of G and fixed values of ,  and  

 

 
 

Fig. 5. Transverse displacement of a simply supported rectangular plate under partially distributed 

forces for various values of and fixed values of ,  and   
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Fig. 6.  Deflection profile of a simply supported rectangular plate under partially distributed masses 

for various values of K and fixed values of , and  

 

 
 

Fig. 7. Response amplitude of a simply supported rectangular plate under partially distributed masses 

for various values of and for fixed values of ,   and  

 

 
 

Fig. 8. Transverse displacement of a simply supported rectangular plate to partially distributed  

masses  for various values of  G and for fixed values of ,  and  
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Fig. 9. Deflection profile of a simply supported rectangular plate under  partially distributed masses  

for various values of  and fixed values of ,  and  

 

 
 

Fig. 10. Comparison of the displacement response of moving force and moving mass cases of a simply 

supported rectangular plate for fixed values of , ,  and  

 

6 Conclusion 
 
The structure of interest is an isotropic rectangular plate on a Pasternak foundation under the influence of a 
uniform partially distributed load moving at varying velocities. The governing equation is fourth order 
partial differential equations with variable and singular coefficients. For this two-dimensional plate problem, 
the solution technique is based on the modified two-dimensional generalized integral transformation, the 
expansion of the Heaviside function in series form, a modification of Struble’s asymptotic method and then 
the use of Fresnel sine and cosine integrals. It is shown that increase in pertinent structural parameters such 
as foundation stiffness, shear modulus, axial force and rotatory inertial correction factor decrease the 
response amplitude of the plate. For the same natural frequency, the critical velocity for the system 
consisting of a simply supported isotropic rectangular plate resting on an elastic foundation and traversed by 
partially distributed moving forces moving with non-uniform velocity is greater than that of the moving 
mass problem. Hence, for the same natural frequency, resonance is reached earlier in the moving distributed 
mass system than in the moving distributed force system. 
  

-6.00E-05

-4.00E-05

-2.00E-05

0.00E+00

2.00E-05

4.00E-05

6.00E-05

8.00E-05

1.00E-04

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5P
la

te
 d

is
p
la

ce
m

en
t 
(m

)

Traveling time (t)s

R0=0
R0=0.25
R0=0.35
R0=0.45

0R 40000K 20000xN 300000G

-1.50E-05

-1.00E-05

-5.00E-06

0.00E+00

5.00E-06

1.00E-05

1.50E-05

2.00E-05

2.50E-05

0 1 2 3 4 5P
la

te
  d

is
p
la

ce
m

e
n
t 
(m

)

Traveling time (t)s

Moving Force

Moving Mass

40000K 200000xN 300000G 5.00 R



 
 
 

Oni and Ogunbamike; JAMCS, 27(4): 1-25, 2018; Article no.JAMCS.42037 
 
 
 

24 
 
 

Competing Interests 
 
Authors have declared that no competing interests exist. 
 

References 
 
[1] Huang CS, Leissa AW. Vibration analysis of rectangular plates with sidetracks via the Ritz method. 

Journal of Sound and Vibration. 2009;323:974-988. 
 

[2] Shadnam MR, Mofid M, Akin JE. On the dynamic response of rectangular plate with moving mass. 
Thin-walled Structures. 2001;39:791-806. 

 
[3] Gbadeyan JA, Oni ST. Dynamic behaivour of beams and rectangular plates under moving loads.  

Journal of Sound and Vibration. 1995;182(5):667-695. 
 
[4] Fryba L. Vibration of solids and structures under moving loads. Noordhoff International Publishing 

Groningen The Netherlands; 1972. 
 
[5] Nurkan Yagis, Emir Sakman. Vibrations of a rectangular bridge as an isotropic plate under a 

travelling full vehicle model. Journal of Vibration and Control. 2006;12(1):83-98. 
 

[6] Zhenggiang Z, Youggang X, Cuiping Y. Nonlinear forced vibration for thin rectangular plate on 
nonlinear elastic foundation. Journal of Applied Sciences, Engineering and Technology. 2013;5(6): 
2163-2167. 

 
[7] Oni ST, Awodola TO. Dynamic behaviour under moving concentrated masses of simply supported 

rectangular plate resting on variable Winkler elastic foundation. Latin American Journal of Solids and 
Structures. 2013;8:373-392. 
 

[8] Holl DL. Dynamical loads on thin plates on elastic foundations. Proceeding of symposia in Applied 
Mathematics. New York, Mc-Graw-Hill; 1950. 

 
[9] Livesly RK. Some notes on the Mathematical theory of a loaded elastic plate resting on an elastic 

foundation. Quart. Journal of Mech, Applied Mathematics. 1953;6-32. 
 
[10] Stanisic MM, Hardin JC, Lou YC. On the response of plate to a moving multi-masses moving system.  

Acta Mechanical. 1968;5:37-53. 
 
[11] Willis R. Preliminary essay to the appendix B, Experiments for determining the effects produced by 

causing weights to travel over bars with different velocities. Reprinted in: Barlow P., Treatise on the 
strength of timber, cast iron and malleable iron. London; 1951. 

 
[12] Ming-Hing Hsu. Vibration characteristics of rectangular plate resting on elastic foundations and 

carrying any number of sprung masses. International Journal of Applied Sciences and Engineering. 
2006;4(1):83-89. 

 
[13] Omer Civalek, Aitung Yavas. Large deflection static analysis of rectangular plates on two parameter 

elastic foundations.  International Journal of Science and Technology. 2006;1:43-50.. 
 
[14] Gbadeyan JA, Oni ST. Dynamic response to moving con elastic plates on a non-Winkler elastic 

foundation. Journal of Sound and Vibration. 1992;154:343-358. 
 



 
 
 

Oni and Ogunbamike; JAMCS, 27(4): 1-25, 2018; Article no.JAMCS.42037 
 
 
 

25 
 
 

[15] Dongyan Shi, Hong Zhang, Qingshan Wang, Shuai Zha. Free and force vibration of the moderately 
thick laminated composite rectangular plates on elastic foundation. Shock and Vibration.  
Available:https:/doi.org/10.1155/2017/7820130 

 
[16] Gbadeyan JA, Ayesimi YM. Response of an elastic beam resting on viscoelastic foundation to lead 

moving at non-uniform speed. Nigerian Journal of Mathematics and Applications. 1990;3:73-90. 
 
[17] Lowan AN. On transverse oscillations of beams under the action of moving variable loads. Phil. Mag. 

1935;19(127):708-715. 
 
[18] Kokhmanyuk, Filippov. Dynamic effects on a beam of a load moving at variable speed. Stroitel’n 

mekhanka I raschet so-oruzhenii. 1967;9(2):36-39. 
 
[19] Esen Ismail. A new FEM procedure for transverse and longitudinal vibration analysis of thin 

rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory. Latin 
American Journal of Solids and Structures. 2015;12(4):808. 
DOI: 10.1590/1679-78251525 

 
[20] Esen Ismail. A modified FEM for transverse and lateral vibration analysis of thin beam under a mass 

moving with a variable. Latin American Journal of Solids and Structures. 2017;14(3):485-511. 
DOI: 10.1590/1679-7825180 

_______________________________________________________________________________________ 
© 2018 Oni and Ogunbamike; This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 
the original work is properly cited. 

 
 
 
 
 
 

Peer-review history: 
The peer review history for this paper can be accessed here (Please copy paste the total link in your 
browser address bar) 
http://www.sciencedomain.org/review-history/24943 


