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Abstract

The dynamic behaviour of a simply supported rectangular plate moving with non-uniform velocities is
investigated in this paper. The inertia and gravity effects of the moving load are taken into consideration.
In order to solve the governing fourth order partial differential equation, a technique based on two-
dimensional finite Fourier sine integral transformations, modification of Struble’s asymptotic technique
and Fresnel sine and Fresnel cosine identities were used.

The closed form solutions are obtained and numerical analyses in plotted curves are presented. The
results show that as the foundation stiffness K and other structural parameters increases, the response
amplitude of the simply supported rectangular plate resting on Pasternak foundation decreases. It is also

shown that for fixed value of foundation stiffness K , axial force N , shear modulus Gand rotatory inertia

correction factor RO, the transverse deflections of the rectangular plate under the action of moving
distributed masses are higher than those when only force effects of the moving load is considered. This
implies that resonance is reached earlier in moving partially distributed mass problem than in moving
distributed force problem.
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1 Introduction

Rectangular plates as the common structural components have been extremely used in various engineering
fields such as aerospace, military and marine industries. Such structures are constantly acted upon by
moving loads; hence, the problem of analyzing the dynamic response of elastic structures under the action of
moving load continues to motivate a variety of investigations [1-6]. The behaviour of plate structures under
moving load, in general, is rather complex especially when the inertia effect of the moving loads is taken
into consideration [7]. Thus, most of the research works available in literature are those in which the effect
has been neglected. This is due, at least in part, to the great amount of computational labour, which is
required both to set up and to solve the necessary equations. One important problem that arises when inertia
effects of the loads are considered is the singularity which occurs in the inertia terms of the governing
differential equation of motion. Generally, the dynamical problems of plate structures under moving load
and resting on foundations are complex. The complexity increases if the velocities at which the load moves
along the span of the structures are no more constant but a variable function of time. Among the earliest
researchers into this subject was Holl [8] who solved the problem of a rectangular plate carrying uniformly
moving loads. He concluded that a critical velocity existed for each mode of vibration. Livesly [9] on the
other hand, considered the problem of a uniformly travelling load on an infinite plate and showed that there
exists a certain critical velocity, beyond which stresses and deflections become infinite. However, in these
studies, the plate considered were idealized by one where mass is approximately neglected. Much later
Stanisic et al. [10] studied the problem of a simply supported non-Mindlin plate under a Multi-masses
moving system and made use of approximation of Dirac delta function and obtained in series form a closed
form solution of the dynamical problem. For a plate structure, without an elastic foundation, Willis [11] used
the finite element method to study the dynamical response under moving loads. He examined the effects of
eccentricity, span length, acceleration and initial velocity of the moving load. Furthermore, the differential
quadrature method was shown by Ming-Hung Hsu [12] as an efficient way of obtaining accurate solutions to
the problem of rectangular plate resting on an elastic foundation and carrying any number of sprung masses.
There was an excellent agreement between the method and known solutions published in literature.
Similarly, the problem of non-linear transient dynamic response of clamped rectangular plate on two-
parameter foundations was tackled by Civalek et al. [13] using the algorithm of singular convolution. In
particular, the problem was discretized in space and time domain using discrete singular convolution (DSC)
and harmonic differential quadrature (HDQ) methods respectively. The response to moving concentrated
masses of elastic plates on a non-Winkler foundation was later taken up by Gbadeyan and Oni [14]. Very
recently, Dongyan et al. [15] use an improved Fourier series method to study free and forced vibration
characteristics of moderately thick laminated composite rectangular plates on elastic foundation with
uniform and multipoint supports. In all these previous works on the response of plates to moving load, the
loads are taken to be moving with constant speed. The more practical cases when the velocities at which
these loads move are no longer constants, but vary with time have received little attention in literature. This
may be as result of the complex space-time dependencies inherent in such problems. Specifically, even when
the inertia effects of the moving load is neglected, analytical solutions involving integral transforms are both
intractable and cumbersome [16]. However, such practical problems as acceleration and breaking of
automobile on roadways and highway bridges, taking off and landing of air-crafts on runway and breaking
and acceleration forces in the calculation of rails and railways bridges in which the motion is not uniform,
but a function of time have intensified the need for the study of the behaviour of structures under the action
of loads moving with variable velocities. This class of problem was first taken by Lowan [17] who solved
the problem of transverse oscillations of beams under the action of moving variable loads. Much later,
Kokhmanyuk and Filippov [18] treated the dynamic effects on the transverse motion of a uniform beam of a
load moving at variable speed. Recently, the transverse and longitudinal vibration analysis of thin
rectangular plate subjected to a variable velocity moving along an arbitrary trajectory using a new finite
element method procedure was studied by Ismail [19]. The technique was applied in a simply supported
beam-plate structure under a moving load and intensive analysis and simulations were conducted at different
dimensionless mass rates. In a more recent development, Ismail [20] studied the transverse and lateral
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vibration analysis of thin beam under a mass moving with a variable acceleration using a modified finite
element method. It is remarked at this juncture, that all the above investigations are very impressive,
however only numerical simulation techniques have been employed. Nevertheless, analytical solution is
desirable as it often shed more light on some vital information in the vibrating system. In addition to the
above, the load in this dynamical system is modeled as distributed load which is a more accurate
representation of load models and the foundation is that of Pasternak generally regarded as the preferred
alternative.

2 Problem Formulation

The dynamic transverse displacement V(x,y,7) of the mid-surface of a prestressed isotropic rectangular
plate resting on bi-parametric Vlasov foundation moving at variable velocity and carrying partially
distributed load according to the two-dimensional theory [6] of flexural motions of elastic plate
incorporating rotatory inertia correction factor is found by solving

az

{Wz—;ﬁ”gz V(x,y,r){Nx angfzy”)w ang’zy J)}_ﬂﬁzV(x,y,t)+KL()WJ)_GV2V()WJ):RX’%1) (M

Fig. 1. Isotropic rectangular plate element

where E is the young modulus, v is the Poisson’s ratio (v < 1), u is the mass of the plate per unit length, x
is the position coordinate in x-direction, y is the position coordinate in y-direction, #is the time, /4 is the

plate thickness, K is the foundation stiffness, G'is the shear modulus and R’ is the measure of rotatory
3

Eh
inertia, V?is the two-dimensional Laplacian operator, D = — is the bending rigidity of the plate and
12(1-v)

is constant throughout the plane. The inertia effect of the mass of the partially distributed load on the
transverse response of the rectangular plate is considered and the load P(x, y,¢) takes the form

P(x,y,t) = Py (x,0,1) I—A;[V (x,2.1)] @

where P, (x,y,t) is the continuous moving force which travels from point y =y, on the plate along a

straight line parallel to the x-axis with non-uniform velocity c¢. Thus the P, (x, y,t) takes the form

Pp(x, y,1) = MgH[x - x() JH[y - y(0)] 3)
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x(t) =xy +ct+ %atz , y() =y, @)
g is the acceleration due to gravity and A" is the convective acceleration operator defined as

Ao (d)(t)] +az [d)(t)] 62 82 dxt) d)(t) az d)(t) 52 ) 0 dzx(t) o &’y )
a’ %

dt dt) & @?? o di @Tﬁ?&dﬁ o P

M is the distributed mass and H(x)is the Heaviside function, x, and y, are the initial positions in the X
and y directions respectively. The time #is assumed to be limited to that interval of time within the mass of
the plate, that is

0<ct<L (6)

Thus, in view of equations (2), (3), (4) and (5), equation (1) can be written as

MMyt Mmoo | PVt PVl Oy Vsnt)  SVsnD)

{ Pyl +2 axz@/z ' @}4 :|+/”‘ & N, Py M 5)/2 'LRO|: Py ' @)zaz:|
(7

Koyl C{azlf(x,y,t) BZV(xy,t)} v, +Ct+%alz)]Hb_yo][(c+al>z62Vg;,y,t)+8zV§gzy,t)

+2(C+ai)821/§;y,t) +aaV(;y’t) :Mgf[k—(xo +ct+%alz)]H[y—y0]

Equation (8) is the fourth order partial differential equation governing the flexural motion of a prestressed
isotropic rectangular plate on bi-parametric Vlasov foundation under the action of uniform partially
distributed loads moving at non-uniform velocity. The rectangular plate being considered has Equation (8) is
the fourth order partial differential equation governing the flexural motion of a prestressed isotropic
rectangular plate on bi-parametric Vlasov foundation under the action of uniform partially distributed loads

moving at non-uniform spans L in the direction of the x — axis and Ly in the direction of the ) — axis and is

simply supported. Accordingly, the pertinent boundary conditions forx = 0 and x =L are

2
o V(x,y,t
Varpay =0 SR ®)
ox
andfor y=0, y =L are
82V(x »,t)
V(x,y,t) = 0 — = ©)
o
The initial conditions are taken to be without any loss of generality.
oV (x, y,t
V(xp = 0 = 200D (10)
ot
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3 Solution Procedures

The equation of equation (7) will be obtained by applying

L L,

~ y j k
V=] ] Vixyosin 2 sin 22 axay
0 0 L L
x y
with the inverse
4 kmy
V(x,y,t)= Z—V(] k t)s1n—s1n—
L.L, L, L,

Applying the generalized two-dimensional integral transforms (11), equation (7) can be written as
X TOL, L) +X Fy(0)+V, (.t = Xy gy (6) = Xy Fiy ()= X Fy (6) = XoFoo(6) + XV (o) = X gy ()
— X, Fgy () + Fo(0)+ Fo(O) + FR () + () =

L

Y

where

= =

X= XK= X

= s
1]
= =

K G
) )(::I?a )%:79 )%:75
H H

mVen) 6’2V(xy,t) [1 ] 5 n%vcaV(x,y r)

b o
0,L,L,,0)= [ |Si 7——C Co. 9—V Sin—d
T(0.Ly, Ly 1) £ 14 2 L i ] L (7)) L ly

o -—.*h

B f{  kp V(xp,0) k’W V( yyt)ﬂ[‘ I Sm—dx
Lo L Q L*

+Ikﬂ5ny0 g w0 (J Jop V1) fm-Cbﬁwﬂxxéfﬁmﬁaﬁ
%@QQ@%Q@»,Q, L

L a

L L, .\ .
FO =1 [7eewo| 22| sin™ sin*aay
00 L L L,

x

L, in
w2 e}

x

2 2

krm jme . kny kny

— | Si i dxdy + V 1)S. Si dxxd,
J[LVJ mL mL xdy _[_[(xy)mL mL ly

x v x y

Sin Jm Sin —— kzy —dxdy
L L

X ¥y

y o'V (x, y,t)S ]7DC

krzy
J o Sin L—dxdy

x y

Meld, —cosk;r+cos% [—cosj7r+co#r(xO +ct+;af)}
Mk L

(11)

(12)

(13)

(14)

) (15)
{Sl [V D) _Jm C J—V( z)HIZIJ Sin%’dy

(16)

(17

(18)
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y o V(x y,t) L Jmx o kmy
Fo, (1) = Lf LJ;V 64V(x’y’t)Sin I in kmy dxd. (20)
e ) oyor L,

L L, 2
F3(r)=£{@l{[ —(xp+et+Lta JHly-y M L SinkL—ﬂydxdy(zl)

X y

L
Fl(t)= gf%H[ (x0+ct+ at )]Hb} M L Skaﬂydxdy (22)

x y

a
—~

~

~

Il
ot~
o >

2 .
f2Meran) gl (v ver+Lar Jaly- yo]Msmeﬂ Si,,’%zydxdy 23)
i »

OxOt )
L L, .
Fl@) =] _|;LH[X—(}CO+ct+%at2)]H[y—y0]MSinﬂSinkﬂdxdy (24)
00 M ox L. Ly
L, A
Uk(y0)=—y —cos 4, +cos x0 (25)
Ay
y
And
1.2 _Ly /1/' 142 (26)
U,(xg+ct+5at )—/1— —cos/1>,.+cosL—(x0+ct+7at )
j x

For all pertinent boundary conditions, 7'(0,L,,L ,7) = 0.1t is recalled that the equation of the free vibration

of a rectangular plate is given by

4 4 4 2
D 0 V(x;yJ) 0 V(zx yat) +a V(x4yat) ,Ua V(x;yat) =0 (27)
Ox ox*oy’ oy ot
Substituting
i k
V(x,y,t)= Sin ﬂSin —ﬂyCos @; it (28)
L, L, ’

into the homogeneous part of the equation of the free vibration of the rectangular plate (27), where @ ik is

the natural circular frequency of a rectangular plate, we obtain

4 4 4
k. iz | | kz k kr k
D iz Snme d +2 2z Smem 7zy Sin mefﬂy —,uwijmem =0 29)
L, L, L, L L, L L}v L, L, L, L, L,
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It is well known that for a simply supported rectangular plate, a)ik is given by

.4 2712 2 4 4
krx k
a)jzﬂk:Dm{J a +27 + 27 } (30)

4 272 4
L e oo

Equation (29) implies

L. L, L L.
L jmx . kny x o jr Jmx
V(x, y,t Sin 22 5in 2 xdy +2 [ [V (x, y,0)| L5 Sin 27 sin . dxd
[ [re )[ ] g S ez ey )(L][Ly] LY Gy

X

L L 4 L L,
7 km L jmx . kny 7] s L jm . kny
+ £ (j)V(x, y,t)[Ly] Sin L L, dxdy = Bwfk g gV(x,y,t)Sm ZSm L dxdy

Consequently,
FO(¢)= %w;k 7(j.k.t) (32)

In order to evaluate the integrals (16) - (20), it is noted that for any arbitrary subscripts j=p, k=¢q,
equation (12) can be written as

V(x,y,t)= i > t)SinﬂSinﬂ (33)
p=lg=1L L, L, L,
It follows that
4 2
" . pmx . qny
V'"\x,y,t —V ,t Sin——>Sin—— 34
(xy) leqzlLLy (pq)( xj mLx mLy (34
Therefore
FBOJ(Z):_p (3%)
Fp(t)=- Lz pqt) (36)
F ()=~ 17( P-q5t) (37)
0 q27[2 .
FCZ(t):_?V’t(p’q7t) (38)

y

In order to evaluate integrals (21), (22), (23) and (24), we make use of the Fourier series representation of
the Heaviside function namely,

o sin(2n +1)|x — (x, +ct + L at?
Hx—(x0+ct+%at2)]:%+igosm( ! )[x2n(j01 drq8 )] 39)
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and

Lo le by g sinl(2m 4 (= p)] 20
Hly=wl=g+—3 S (40)

In what follows, we seek to evaluate integral (20) and note that

» Si - » Si — t+ L at?
H[x (xo+ct+ at )]H[y yo 11 e L 1 Sm(2m+l)7r(y y0)+Lsz(2n+l)7z[x (x0+ct+2at )]

6 4z 2m+1 4z 5 2m+1 1)
1 = 2 Sin 2n+1 [ (xo+ct+7at2)]Sin(2m+l)7z(y7y0)
*ZZ
7 mm=o 2m+1 2m+1

In view of (39) the integral (21), can be written as

FF‘)(I)PW[T] {16;§“V(p a.0X(p, NY(k, q)+5;§”§)ﬁ1/(p,q, )X (p, )Y (k,q,m) (42)

+—ZZZ—V(19,% )X (p, j.mY(k, q)+—ZZZZ—V(p q.t)X (p, j,m)Y (k,q,m)

47Z'p1q1noLL 7T° p=tg=tm=on=0 L L

Making use of similar arguments, it is not difficult to show that

M 1 o o 4 © o 4 _
FO) =YL S5 2 7 (p g )Xo )Y gy 4= £ 5 5 —2 7 (. 0)X(p, DY (kg m)
u 16p]q1LL 47Z'plq 1m=l OLxLy (43)

7, (p.q,0)X (p, j,m)Y (k,q,m)

0 00 0 ©  ©

1 4 o o
F— Yy Y — )X (p, jon)Y (k, +*ZZZZ
47Z'plq 1n=| OLL tt(pq ) (p] ) ( q) 7[2plq 1m=0 n= OL L

F#(¢)=W{%ij 7, (p,q,1)X,(p, )Y (k, q)+*222 V(2@ 0X (. DY (k,q.m) (44
y

+—222L L 7 (p:q.)X (. j,m)Y (k, q)+ ZZZZL V1 (p:,0X,(p, j,m)Y (k. q,m)
p=lg=1n=0 p=lg=1 m=0n=0 y

V(p.q.0)X,(p, )Y (k,q,m)

F)=* {lii LV (p.q.0%,(p DY (K, q)+—”2§

,U 16 p=lg=1 LXL} (45)
1] 222 4 — © )
+EZZZL L V(paqat)X (p ] n)Y(k q)+ ZZ ZZL V(paqat)Xl(pajan)Y(kaQ9m)
p=lg=1n=0 L, L p=lg=1m=0n=0 y
Where
L
X(p, jun) = J-Sm(2n+1)7r[x (x, +ct+1at® lGin Jm Sln ™ (46)
0 2n+1 L
X(po )= | Sin L™ sin P 4y (47)
0 L, .
L ,
Ykog) = | sin 2 sin T2 g (43)
0 L L

y
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L .
X, (p,j)= | Cos P Gin 17 ax (49)
0 L, Ly
L‘Sin(2n+1)7r[x—(x +ct+iat2)]r, px . jmx 50
Xl(p,j,n):J. 0 2 Cos —— Sin"—dx (50)
! 2n+1 L L
[‘\ .
Y(k.qg.m) = J‘Sm 2m + l)ﬂ[y - yU]Sin kmy Sin qry &y 51)
° 2m +1 v L,
In evaluating the integrals (47)-(49), one takes into account the following orthogonality relations;
L . L, .
X(p,j)zJ.SinﬂSin PR =1 P7/ (52)
0 Lx Lx 0 :
> PF
Ly k;ry qry L7‘ k = q (53)
Y(k,q)= jsm = Sin S =dy =427
0 r r 0, k#q
& X j X
X\(p.j)= [ Cos B2 sin 7% dx =0, ¥ p. j 4
0 Lx Lx
Noting that
Sin (2n + l)ﬁ[x —(xy+ct+ Jfatz)] _Sin(2n+1)axCos (2n+ 1)z (xy +ct + Lat?)
2n+1 2n+1 (55)
_ Cos (2n + l)zxSin (2n + )7 (x, + ct + Lat?)
2n+1
Such that
YoSin (2n+ Drlx - (xy +et +Lar® |, jax o pax (2n+1)L2 ,
! 20+ 1 Sin S Sin S = [Zl(p”) (56)
] Cos (2n + l)z(xg + ct + Sat ) —Z.(p. ) Sin (2n + 1)z (x, + ct + S at 2)}
n+1 2n+1
Where
Z.(p. )= {(— 1) cos(2n+ 1)L, -1 (=1)"7 cos(2n +1)7L, — 1} 57)
1 > - 2 . - .
[@n+DL, - (p+/)  [@a+DLT-(p-))
| (1P sin@u+ DA, (<1)7 cos@u+1)A.,
Z,(p, )= 2 N 2 \2 (58)
[@n+1)L.] ~(p=jF  [@n+1)L.] ~(p+))
and
L',r . _ 1 2 .
i sm(2n+1)ﬂ[x (x, +ct+yat Jcosﬂsinﬂdx: 2n+1)L, [Zl*(p,j)-
0 2n+1 L, L, 2z 59
cos(2n +D)m(x, +ct+Lat’) _Zo ) sin(2n+ 1)7;51xi-1FCf +%‘”2)}

2n+1
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where
o TeEeley cos@nrnar, 1) (p- H=1) cos2n+ L, -1 60)
Z(p,))= 2 RY) 2 2
[2n+1)L, ] ~(p+ /) [2n+1)L.] -(p-j)
Z(poj)= [(p + (= 1)"”2sin( 2n +.1)27er (p- Py zsin( 2n +.1)27er } 1)
[@n+D)L. ] - (p+)) [2n+1)2, T =(p-))
]-‘sin( 2m+ D)z (y —y,) sin 47 g k mwx dr = 2m+1)L, )
0 2m +1 L, L, 2z (62)
[Zl(k,q) cos(2m +my, 7.k, q) sin( 2m + 1)72)/0:|
2m +1 2m +1
Zkq)= {(— ) cos@m+)aL, ~1 (=1 cos@m+ 1), —1} )
[em+ 1)L f~(k+qf  [2m+1)L] ~(k—q)f
Z.(kq) = (-1)sin(2m + DAL, (=1)""" cos(2m + DzL, (64)
2m+1)L. [ —(k-q) [@m+1)L T -(k+q)
[(2m +1)L,] .
Substituting the above results into equation (13), after some rearrangement, one obtains
K N _M i_ﬁ Eaary
(]kt)+(a)2 + JV(]kt) ( s p z JV(],k,t)+R[ Tz jV,,(],k,t)
G j27z2 P 172722 ) 2[ cos(2m+1)7%
+#[ " JV(] kO +TLL, pzlqzl{(cwz){ 7 2LiL§ ;;Z;pq 2,0k
sin@m+ 0wy} g 2o  cos@n+Dalx +ct+yar)  sin@n+a(x, +ct+ar)
—Zﬁk’q)z,,m]‘g;;l;” (Zl(”’f' we AT

N Dy, cos@n+)a(x, +ct+1af’)
2 QmA 1)@+ D2, ()2, (hg) 2 DB 2
LiLf,le;;;”( )@+ 02, (p, N2 — = o

Dy, s1n(2n+1)7z'(x0+ct+ at)
2 O D@+ D2 (p. )7 (k) S DB
LLZZZZP D@+ V() "

S S S e @02 (p. )2k )S‘“Q’””)’% sin@r+lats, +et+3ar)

L2L2 p=1g=1 m=0n=0 m+1 2n+1

Sanm+1)7y/0 cos@n+1)zr(x, +ct+7 atz)}

ZZZZp2q2(2m+l)(2n+l)Z (p, ))Z,(k,q)

Lsz p=1g=1 m=0n=0 +1 27’l+1
cos@n+a(x, +ct+Lat’) . sinQu+l)m(x, +ct+Lat’)
ZZZ Z(p.)) —-Z(p.)) :
x p=1g=1n=0 2n+1 2n+1

S S pd @ en+0Z, (p. V2 >°°SQ’”“)’% cos@n+ i, +et+3af)

L2L2 1 =1 m=0n=0 m+1 2n+1

v P=

10
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© o ® o cos@m+1)ay, sin@n+Na(x, +ct+- atz)
mz [ LYY e N 2 2 ) o

VNS sin@m-+1)zy, Cos@n+a(x, +ct+ ar’)

L2 L2 pZ]qZ]mZOHZOquanH)(an)Z A il
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_iii < (Z](p’.j)cos(2n+l)7r(xl,+ct+7at ) ~Z.(p, )cos(2n+1)7r(x(,+ct+ zat )]

27 53 A o 2n+1 2n+1
21 S B &L 2 . . cos(2m + ) zy, sin(2n + )7z (x, +ct +Lat?)
- 2m+ D)(2n+1)Z (p, )Z,(k, 0 0 z
Lig;;;};pq @m+ 12+ DZ](p, NZ, (k) —— o
277 L& &L sin(2m + 1)y, cos(2n+1)z(x, +ct + Lat?)
+ = 2m+1)(2n+1)Z, Z,(k, 0 0 2
1, 2% X 2 pa Cme D2 DZ:(p N2 ) = ]
217 EE &S L 2 . . sin(2m + )7y, sin(2n+ D)z (x, +ct +Lat?)
- 2m+1)2n+1)Z (p, )Z,(k, 0 0 Z
LLZZZqu( Y2n+DZ{(p, N2y (ki) —— o
AT S sin(2n + D)7 (x, +ct + Lat?)
s ZZZqu (2m+l)(2n+l)Z (P, NZ,(k,q) ( )7 (X 2 .
LL, 52 a5 mmono 2n+1
i ~ MgL L,
w}/ﬁ(l’, ) ):& —cos kr + cos ks {—cos ]7Z'+COS (x0+ct+ at )}
2m+1 wimkrw L, (65)
Where
M
r, = (66)
uL L,

Equation (65) is now the fundamental equation of our problem when the isotropic rectangular plate has
simple supports at all its edges. Next, we shall consider two cases of the equation.
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3.1 Simply supported rectangular plate traversed by moving distributed force

The moving distributed force model of the simply supported rectangular plate is obtained by setting I} =0
in equation (65). In this case, equation (65) reduces to

Qk0+&f+}okg{§if Nkf zﬁ#ﬁ}@kﬂ+ﬁ(?{ﬁ%j A

2
o A

(67)

X Yy

ji7 Kk g@L kry, . jr '
{ I r J V(j,k,t)= e cosk;r+c0sTy —cospr+c0sfx(xo+ct+7at2)

This is an approximate model which assumes the inertia effect of the moving distributed mass as negligible.
Thus equation (67) after some rearrangement can be written as

= = . T
V(. k0 + 385,V (k1) = PASF[— (-1 +cost—(x0 +ct+%at2)} (68)
where
LL 2 2 2_2 LL 2 2 2_2
wf’k+£+ x }[ijf +Nyk72r J+G u }(17; +k72zj
52 _ M 4/1 LX Ly M 4 LX Ly (69)
SMF —
1+R0£‘—Ljij2”2+k2’r2
4\ L L
x 'y
and
MgL
M —cos kx + cos kmyy
po wjrkrx L, (70)
MF  —

LYL jZﬂ_Z kZﬂ_Z
1+ R, 4)[‘142 + IE
x ¥

Solving equation (68) using variation of parameters method in conjunction with Fresnel sine and cosine
identities and the initial conditions (10), one obtains

4

= = P f b2 b, + 2at b, + 2at

Vi(x,y,t)= Z Z ME sin 8g0t| sin| —=—-C S[ ] -C, |C| 2 j
LxLJ j=lk= 2551\11‘ V2 " 4a ! V27a ! 2ma
(b} b, + 2at b} (b, + 2mj ( s j
+ sin -C, |S +cos| ——C, |C -C, |S

4a OJ [ N 27ma J [461 0 N 27ma 0 2ma
b2 b b? b b} b
—cos| -+ -C, C[ 2 J—sin - -c, S[ilj—cos - -c, C[ ! j
4a 2ma 4a 2ma 4a 2 ra
4

1 b 2at
- sin(jz +8,.t)=sin(jzr -5y, t cos & sin| -—-C, |C| =
26, [ (J SMF ) (J SMF )]J SMF [ ( 0 J ( N J

bz b, + 2at b? b, +2at b} b, +2at
+cos| —-C, |S +sin| = - C, |C| 2 —cos| =-C, |S| 2
[4a ] [ Vara J [4a °J [ Nez ] [4a °j [ V27 J
b} b b} b by b,
+sin| +—-C, |C ! —cos| ——— S ! —sin| =~-C, |C
[4a J [ 2na] [4a °J [vmmj (4a °J [VLmj
2
+cos(iza ]S[ by J+ 511,— cos jm+ 251 [cos (j = S g 1)

SMF (71)
—cos(jﬂ-f—&sw }{ }

0o

12



Oni and Ogunbamike; JAMCS, 27(4): 1-25, 2018, Article no.JAMCS.42037

Equation (71) is the transverse displacement response to travelling distributed forces moving at variable
velocities of a simply supported isotropic rectangular plate with rotatory inertia correction factor resting on a
non-Winkler type elastic foundation.

3.2 Simply supported rectangular plate traversed by moving distributed mass

In this section, the mass of the moving load is commensurable with that of the structure and the inertia effect
of the moving mass is not considered negligible. Thus, I'; # 0 and the solution to the entire equation (65)

when no term of the coupled differential equation is neglected, is required. This is termed the moving mass
problem. Thus, in view of the homogeneous part of equation (67), equation (65) can now be written as

~ LH, 5 =~ Sar +TH,; 1))~ LH, t
ks SEEORD sy (Gt LD TH )
1+ T H; (m,n,t) 1+ T H; (m,n,t) 1+ T H; (m,n,t)

{(c +at) -

1 2
£ 35 3 om0 n- D 4 () gy S DB 5@ Vb et o)

p=l q:Ln:Om:O 2m+1 2n+1
P#jq#

33 . cos@m+1 sinQ@n+1)zlx, +ct+Lat’
- I3 >Cm+)2n+1)p’¢*Z,(p, ))Z,(k,q) @m+ 1Dy, sin( ) ( 0 . )

p:l.q:}{n:Oin:O 2m+1 2n+1
P*iq*

© XD P . sin(2m +1 cos(2n+ ) zlx, +ct + L at?
=555 S e D@n ) g (2, (p, )7, (k) SR DD SR by ver+yar)

p:l.q:} n=0m=0 Zm +1 2}’[ +1

p#jqrk

+ 333 Y m+D)Q2n+D)p**(Z,(p, )Z, (k. q)

sin(2m +1)zy, sin(2n+ l)7r(x0 +et+Ltat’ )J

p=1¢=1 n=0m=0 2m +1 2}’[ +1
p#jg*k
iCn+)pg*n = » = cos(2m+1 sin(2m +1
o LEADPIT $ 5§ (7 (1 q) MDD _ 7 gy SN D
- p=14=1m=0 2m+1 2m+1

p#jgrk

lrags . cos(2m +1 cos(2n+1)zlx, +ct + 1 at’
CPL S 555 Qe DZ(p, )7,k g) S DB o )l +ct + Lar’)

T p=lg=1n=0m=0 2m+1 2n+1
p#jqrk

‘ cos(2m+1)zy, cos(2n+ 1)7r(x0 +et+ g atz)

P55 3 S @mNZ;(p )Z, (k)
T p=lg=1n=0m=0 2m+1 2n+1
P*jq#k
2 % % w ow N X COS(2m+1) Sln(2n+1)ﬂ'(x +Ct+lat2)
+ 215 35 5 @m+DZ (p )Z,(k,q) B MRS
T p=lg=1n=0m=0 2m+1 2n+1
VENIED
2 6w ow . ) sin(2m +1 cos(2n+)zlx, +ct+ L at®
2L 555 S @meDZi(p, )Z, (K, q) ( o b 2a0)
T p=lg=1n=0m=0 2m+1 2n+1
p#jq#k
2 % % ® ® B X cos(2m +1 Sln(2n+l)ﬂ'x +Ct+lat2 ~
PS5 S Q7] (py )7k ) S D b reresat )
7T p=lg=1n=0m=0 2m+1 2n+1
p#jg#k
2n+1)pg’j = » = cos(2m +1) sin(2m +1)
s(eran| ZEDPIT § & z[zl(k,q)’%—zz(k,q)’%
Jj —-p g;ljgilkmz() 2m+1 2m+l
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2pg? © » » = cos(2m +1) cos(2n+1)7r(x +ct+lat2)
P15 55 5 @meDZi(p. HZ,(k.q) Bo. L
—0m=0 2m+1 2n+1

2pa? © © » = . . cos(2m +1 sin(2n+ Dzlx, +ct + L at®
PL S 553 @m+1)Z (p, )Z,(k,q) ( o (¥, Lar’)
n=0m=0 2m+1 2n+1

72
pq2 sin(2m + )y, cos(2n+ 1)7[()60 +ct+ % atz) (72)

2m+1 2n+1

2 e ow w cos(2m +1 sin2n+Drlx, +ct+Lat* )\~
PS5 55 0meZ (p p2ath g 2D b retesa )y, 0
q m=0 2m+1 2n+1

I gLiLi
k(1 + T H] (m,n, 1)

i .
)[—cos km +cos Z)’o J(—cos j7r+cosi—ﬁ(x0 +ct+;at2)J
y

X

where

cos(2m+ 1)z,

Him,n, 1) =5~ om+l

Ou

LL 2 5

1 { L Lk > (2m+1)Z,(k)
m=0

LZ

4

jq L T

cos(2n+1)7z(x0 +ct+%at2) (73)
2n+1

>3 (2n+1)2,())

0 1 2
5 Z(2n N 1)(2n N l)Zl(j)Zl ) cos(2Zm + Dy, cos(2n + l)7r(xO +ct+ yat )
m=0 n=0 2m+1 2n+1

c+at|J L sin@n + ) lx, +ct+Lat’
H;(m,n,t) = SZ () y sar)
(@) 21 o 2n+1

M

2K e e mH)costJrl)z% Sin(2n+l)7r(x0+ct+%at2) (74)
e 2m+1 2n+1

2 2L .
Himn = (e ran?| LB | TEE S (417, 0 S22+ D
QM 16Lx 4L m=0 2m+1

L ne)r cos(2n + 1)z (x, +ct+gat2)+ 220417

y2(2n+1)2( ) 2n+1 T

cos(2n+1)z(x, +ct+Lat ) 20 cos(2m + 1)y, (75)
>(@2m +DZ,(k)y————
2n + 1 2 m=0 2m +1

T @n+DZ,())

1 2
v J’L ¥ Z(2n+1)Z( )sm(2n+1)7r(x0+ct+7at )
27w n=0 2n+1

) 1 2
z Qm+1)Z,(j)Z, (k) cos(2m+)my, cos(2n + 1)7z(xO +ct+sat )
090 2m+1 2n+1

_2j4k2
V4

ﬁ[\/]s
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(-1) cos@n+)aL, -1 cos2n+), —1

Z. ()=
v [2n+1)2, ] -4)7 [2n+1)L, ] (76)
o 2j (_1)2.1‘ cos(2n+ 1)zl —1
Z,(J)= { [(2n e ]2 Y } -
Z,(k) = (— l)f cos@m+ )z, —1  cosQ2m+a, —1 »

[Cm+1)L, | - 4k [(em+1)L, T

Next, we seek the modified frequency corresponding to the frequency of the free system due to the presence
of the moving distributed mass. An equivalent free system operator defined by the modified frequency then

replaces equation (72). To this end, we set the right hand of (72) to zero and consider a parameter 7710 <1 for

any arbitrary mass ratio I'; defined as

I;
0
o= (79)
1+T;
Evidently,
0 0,2 0.3
Lo=n +0) +(m) +... (30)
which to order one gives
0 0,2
Iy=mn +0@,) (81)
Now
:(1+1"1H1*)71 =1-T\H, +TH” -TJH” +... (82)

1+0H,

A case corresponding to the case in which the inertia effect of the mass of the system is regarded as

negligible is obtained when we set 7710 =0 in equation (72). In such a case, the solution to (72) can be
written in the form

Whenever
ry| <1 &3
Therefore
NH, —rH*(l TH +T°H? )— : .
———=0H,I-T'H, +ITH,~ +...)]=01H, + 0\l 34
1+T,H, (84)
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55 +F1H3 2 * * 2 %2 2 * 2 * 2
S — :(5SMF+F1H3X1_F1H1 +ITH +.. ')ngMFJFFle ~Isur i +O(F1 ) (85)
1+ T H,
22
F1ngLV * 2% 2.2 2
FLL 1-T'H, +IH, “+...]=TgL L + O\l
\+TH ( 111 1 11 ) 186, L, (1) (86)

A case corresponding to the case in which the inertia effect of the mass of the system is regarded as

negligible is obtained when we set 7710 =0 in equation (72). In such a case, the solution to (72) can be
written in the form

7(j k1) = Chy COS[5SMFt ¢MM] (87)
where C]?/[M and ¢,,, are constants.

Furthermore for any arbitrary mass ratio I, there is always 7710 < 1, the Struble’s technique requires that the
solution of the homogeneous part of equation (72) be written in an asymptotic form, namely

V(jkot) = D (. kot cos[S gyt — d(is ko )|+ 7 (G e t) + 0(7710 )2 (88)

In order to obtain the modified frequency, equation (88) and its derivatives are substituted into the
homogeneous part of equation (72). Therefore, we extract only the variational part of the equations

describing the behaviour of D" (j,k,¢) and #(j,k,t) during the motion of the distributed mass. The

modified frequency is then obtained from these variational equations. Thus, substituting (88) and its
derivatives into the homogeneous part of equation (72) and taking into account equation (81) and retaining

0 .
terms to 7, , one obtains

2D (. k) gy $(j ke t)cos [5gp t = (k. t)]-2D"(j,k,1)8 gy sin [ sur L= 9ok, t)]
n0¢d g { JiL, Z“”; ') sin( 2n +1)7r(x0 +ct + ITatz)
- - 1

QW 2n +1

cos( 2m + )y, .sm( 2n +1)7r(x0 +ct + rat )
=0 m=0 m +1 2n+1

}D*(j,k,t)~

jlz’L, , . cos(2n+1)7r(x0+ct+Lat2)
5 k, . z
cos [ SMF ¢(/ t)] 0, { 161, + 4 = 1UJ n+ 1
o 0 1 2
P22 5 D2 DZ (N7 (k cos( 2m + l)zy, cos( 2n +1)7r(x0 +ct + rat )
+J ”Z:‘,OZ,O( m+1)(2n+1)Z,(J)Z,(k) m 1 n 1
0 2
i : MOsur | LeLy | KL & cos(2m + 1)y,
D (j,k,t)cos|0 gt — Jk,t)|- + 2m+1)Z (k) ————4
(J.k.t)cos [S500 = 4(j. k. 1)] o { 16ty 2 @meDZ (==
k I’L
x ‘”22(2m+1)(2n+1)2 ()Z,(k) cos(2m + 1)z, 'cos(2n+1)7r(x0+ct+ at )
87 00 m=0 2m+1 2n+1
+ e ”22(2m+1)(2n+1)2( NZ,(k) cos(2m + 1)y, ’COS(2n+1)7Z(x0+ct+Jzat2) '
L / 2m+1 2+l
D*(j,k,r)cos[ et —$(j.k.1)]=0 (89)
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2n+1 Lar?
cos(2n + )Zr(zx-t ;L il i )cos[ﬁ&wt - ¢(j, k, t)] = 2(2; o {cos[(Zn + l)ﬁ(x‘, +ot+ 4 atz)

+ Syt — .k, 1]+ cos|@n+ Dlx, +ct + Lat? ) =Syt + ¢, kot)]f

COS(2n+1)7[(x0 + ct +%at2) . e _ 1 . L2

P sin [5SMFt ¢(],k,t)]— 72(2’1 D {sm [(Zn + 1)71'(x0 +ct + Lat )

( + 55M§t— #( ke )= sin[(2n + D)z (x, + ot + Lat? )= gpt + (j ko 1)]
sin(2n+D)zlx, +ct +Lat?) . . 1

Sourt -9 k1)) = ————

n+l sm[ smr € ¢(/7 ,t)] 22n+1)

St + (ko t)] = cos [(2n+ Dz, + et + yar? )+ S gyt — $(j Kot )]}

sin(2n+1)7r(x0+ct+%at2)

2n+1

{cos [(2n + 1)7r(x0 +ct + ;atz)

cos [5SMF t— ¢(j,k,t)]= 2(% {sin [(Zn + 1)72'(x0 +ct + %atz) (90)

+1)
—Sgur t + (k)= sin[2n+ D) (x, + et + Lar? ) =5 gy t + 3 (o )]}

Neglecting terms that do not contribute to the variational equations, equation (89) reduces to

2D°(j, ke, )p(j, ke, t)cos[ Syt — ), )] - 27 (i, ke, )8 gy sin[Sgyot — (. K, 1)]

02 22 2 2 (91)
e JmLly Pzt e, cos(Zm+Day,y | .., . :
+4 - +I > m+)Z, () ——=2 Jk,t)cos|Oqrt — P j, k.t
o { oL T S @mrhzi =" (ks 0)cos[Sg gt = (), K, 1)]
0 LL .
% | S LS k2(2m+1)Zl(k)7cos(2m+l)ﬂy° }D*( Juk.tycos[Sget — p(j, kot )]
QM 16 2 m=0 2m+l

Equating the coefficients of the Cos[é'SMFt - ¢(j, k, t)] and Sin[é'SMFt - ¢(j, k, t)] to zero in equation (91),

we obtain

L 1
e _ 92)
T Zpg(m,yo)} 0

. . 1 L
Z@Mfd]akat) - ’AOPQ{_/%(/’L) +Z’0A(m’y0) _§SM’|:

and
~2654,,D (j.k,t)=0 (93)

respectively as the variational equations of the problem describing the behaviour of D*( J,k,t) and
&(j, k,t) where

1
Po =T (94)
0 QM
2.2 2L
p (L)L 2y (95)
1 Lx
2 2
P, v) = LE$ k2 m 1)z, (k) 2 DD %6)
Lx m=0 2m+1
Py, y)= L, 3 k2 (2m+1)Z, (k) 2 DD ©7)
m=0 2m+1
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,L
e nlfg{4p,4(m ;0) 210 )+L;§J,_1 . (98)
SMF
and
D(j,k,t)=C",, (99)
. o | L psmy)-pG.L) LL -8
Fht)=Clycod 8t~ 22 4PAmY)=p )+ L, —8p5(m,y,) b (100)
2 Osur 16
which after some rearrangement leads to
V(j.kot)=Ciny cos [Sgyn t = fony ] (101)
where
Py 4PA(m o) =i, L) L.L —8pgz(m,y,) (102)
Ssunr = Osur 1= 2
2 5SMF 1653MF

represent the modified natural frequency representing the frequency of the free system due to the presence
of the moving distributed mass. We now replace equation (72) by the equivalent free system defined by the

2
modified frequency d,,,, . Thus, neglecting terms of 0(7710 ) , the homogeneous part of equation (72) can

be written as
V(s kest)+ 85,V (s er2) = 0 (103)

In view of equation (103), the entire equation (72) reduces to

- - ‘gLL, k. ~
K,(j,k,t)+5§MMV(j,k,t):& —coskrr+cos 20 —cosj7r+cos£(x0 +ct+%a12) (104)
Jrkr L, L

X

which when solved in conjunction with the initial conditions yields

4 s o nL, L &N . . b? b, + 2at
Vi(x,py,t)= > Z sin & t| sin | — —
Coyn =g L, i 255MM V2a s 4a 2ra
2
+ cos by £ 2ar + sin b—'—CO N by + 2at + cos b—'—CO c by + 2a
V2rza 4a 2ra 4a ~2ra
b b} b
—sin | —2-C, |S 2 -cos | —=—-C, |C 2 - sin N
[40 0] [VZn’a] [40 0] (\/27251] [ ] (\/2 a]
b} b
— cos [41‘1 - Cojc(\/zl?]7 26 g [Sm (/” + 6 sum t)’ sin (/” — O sun t)]]
: b+2m] b? [b +2at]
— 0S8 Sy t| —sin| ——-C, |C|— +cos | ——-C, |S]|
Smm [ [4a o] [ J2na ia 0 Jina
b? b 2at b} b 2at b} b
+ sin - C, C[ 2 * 24 ]—cos -2 -C, S( 2 * 24 ]+ sin | —4—-C, C(i‘]
4a 2rza 4a 2ra 4a 2ra
el ) (8o Je ) o (85 o (2]
—cos | ——=C, |S —-sin | —-C, |C +cos | ——=C, |S
[4a j ey va )N\ Ve S e (105)
+ L cos jr + [eos (i = S g )= cos (jm + 6 )DIPug {sin REAREE L
S sum 26 s L, )
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which represents the transverse displacement response to travelling partially distributed masses moving at
variable velocities of a simply supported isotropic rectangular plate resting on bi-parametric elastic
foundation.

4 Discussion of the Analytical Solutions

It is important to establish conditions under which resonance occurs, since the deflection of an elastic plate
may grow without bound. Equation (71) shows that the simply supported isotropic rectangular plate resting
on Pasternak elastic foundation and traversed by moving distributed force reaches the state of resonance
whenever

Sqp =220, Seus =’ZVC +2at, (106)

X X

while equation (105) indicates that the same plate under the action of moving distributed mass will
experience resonance effect whenever

Sy =22 Sons = —JZVC +2at, (107)

X X

Evidently,

Py %pA(m,yo)—p](j,L)+LXL},—8pB(m,y0) _
2 8 Sur 160 g1 L

c (108)

5SMM :é‘SMF 1

X

Equations (106) and (107) show that for the same natural frequency, the critical velocity for the system
consisting of a simply supported isotropic rectangular plate resting on an elastic foundation and traversed by
partially distributed moving forces moving with non-uniform velocity is greater than that of the moving
mass problem. Hence, for the same natural frequency, resonance is reached earlier in the moving distributed
mass system than in the moving distributed force system.

5 Results and Discussion

In order to illustrate the foregoing analysis, an isotropic rectangular plate of lengths L = 4.57m and

L, =9.14m along is considered. The mass per unit length x = 2758.291kg /m , modulus of elasticity

E=2.109x10"N/m® , moment of inertia I =2.87698x10°m" , the plate thickness /# =0.35m and
bending rigidity D = 1000is considered. The values of foundation stiffness K is varied between ON / m’ and
400000N / m® , the values of axial forces N, and N, varied between ON and 2.0 x 10° N , the shear modulus
G is varied between ON/mand3.0x10’ N/m . In Fig. 2, the transverse displacement response of a simply
supported isotropic rectangular plate under the action of partially distributed forces moving at variable
velocity for various values of foundation stiffness K and fixed values of axial force N = 200000, shear
modulus G =300000 and rotatory inertia correction factor R =0.5. The figure shows that as the
foundation stiffness increases, the response amplitude of the rectangular plate decreases. Similar results are

obtained when the simply supported plate is subjected to partially distributed masses travelling at variable
velocity as shown in Fig. 6. For various travelling time t, the deflection profile of the rectangular plate for
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various values of axial force N, and for fixed values of foundation stiffness K = 40000, G = 300000 and

rotatory inertia correction factor R’ =0.5is shown in F ig. 3. It is observed that higher values of axial force
N reduce the deflection profile of the vibrating plate. The same behaviour characterizes the deflection of
simply supported rectangular plate under the action of distributed masses moving at variable velocity for
various values of axial force Ny as shown in Fig. 7. Also Fig. 4 depict the transverse displacement
response of simply supported rectangular plate to partially distributed forces travelling at variable velocity
for various values of shear modulus G and for fixed values of foundation stiffness K = 40000, axial force
N, =200000 and rotatory inertia correction factor R’ = 0.5 . The figures clearly show that the response

amplitude of the simply supported isotropic rectangular plate under the action of partially distributed forces
travelling at variable velocity decrease with increase in the values of shear modulus G. Similar results are
obtained when the simply supported isotropic rectangular plate subjected to a partially distributed masses
travelling at variable velocity as shown in Fig. 8. Fig. 5 shows that for various values of rotatory inertia

correction factor R and fixed values of foundation stiffness K = 40000 , axial force N . = 200000 and

shear modulus G = 300000, higher values of rotatory inertia correction factor reduce the deflection profile
of the vibrating plate of simply supported rectangular plate to partially distributed forces travelling at
variable velocity. The same behaviour characterizes the deflection profile of the simply supported
rectangular plate under the action of partially distributed masses moving at variable velocity for various

values of rotatory inertia correction factor R’ as shown in Fig. 9. Furthermore, Fig. 10 shows the
comparison of the transverse response of moving force and moving mass cases for simply supported
rectangular plate traversed by a moving load travelling at variable velocity for fixed values of foundation

stiffness K =40000, axial force N =200000 , shear modulus G =300000 and rotatory inertia

correction factor R’ =0.5.
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Fig. 2. Transverse displacement of a simply supported rectangular plate under partially
distributed forces for various values of K and fixed values of N = 20000, G =300000

and R°=0.5
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Fig. 3. Deflection profile of a simply supported rectangular plate under partially distributed force for
various values of axial force N and for fixed values of K = 40000, G =300000 and R" = 0.5
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Fig. 4. Response amplitude of simply supported rectangular plate to partially distributed force for
various values of G and fixed values of K =40000, N, =20000and R’ =0.5
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Fig. 5. Transverse displacement of a simply supported rectangular plate under partially distributed
forces for various values of R’ and fixed values of K =40000, N, =20000and G =300000
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Fig. 6. Deflection profile of a simply supported rectangular plate under partially distributed masses
for various values of K and fixed values of N, = 20000, G =300000and R’ =0.5
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Fig. 7. Response amplitude of a simply supported rectangular plate under partially distributed masses
for various values of N and for fixed values of K = 40000, G =300000 and R’ =0.5
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Fig. 8. Transverse displacement of a simply supported rectangular plate to partially distributed
masses for various values of G and for fixed values of K = 40000, N, =20000and R" =0.5
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Fig. 9. Deflection profile of a simply supported rectangular plate under partially distributed masses
for various values of R” and fixed values of K = 40000, N, =20000and G =300000
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Fig. 10. Comparison of the displacement response of moving force and moving mass cases of a simply
supported rectangular plate for fixed values of K =40000, N, =200000, G =300000and R’ =05

6 Conclusion

The structure of interest is an isotropic rectangular plate on a Pasternak foundation under the influence of a
uniform partially distributed load moving at varying velocities. The governing equation is fourth order
partial differential equations with variable and singular coefficients. For this two-dimensional plate problem,
the solution technique is based on the modified two-dimensional generalized integral transformation, the
expansion of the Heaviside function in series form, a modification of Struble’s asymptotic method and then
the use of Fresnel sine and cosine integrals. It is shown that increase in pertinent structural parameters such
as foundation stiffness, shear modulus, axial force and rotatory inertial correction factor decrease the
response amplitude of the plate. For the same natural frequency, the critical velocity for the system
consisting of a simply supported isotropic rectangular plate resting on an elastic foundation and traversed by
partially distributed moving forces moving with non-uniform velocity is greater than that of the moving
mass problem. Hence, for the same natural frequency, resonance is reached earlier in the moving distributed
mass system than in the moving distributed force system.
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