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Abstract

The temporal analysis of stellar activity evolution is usually dominated by a complex trade-off between model
complexity and interpretability, often by neglecting the nonstationary nature of the process. Recent studies appear
to indicate that the presence of multiple coexisting cycles in a single star is more common than previously thought.
The correct identification of physically meaningful cyclic components in spectroscopic time series is therefore a
crucial task, which cannot overlook local behaviors. Here we propose a decomposition technique that adaptively
recovers amplitude- and frequency-varying components. We present our results for the solar activity as measured
both by the sunspot number and the K-line emission index, and we consistently recover the Schwabe and
Gleissberg cycles as well as the Gnevyshev–Ohl pattern probably related to the Hale cycle. We also recover the
known 8 yr cycle for 61 Cygni A, in addition to evidence of a three-cycles-long pattern reminiscent of the
Gnevyshev–Ohl rule. This is particularly interesting as we cannot discard the possibility of a relationship between
the measured field polarity reversals and this Hale-like periodicity.

Unified Astronomy Thesaurus concepts: Solar cycle (1487); Computational methods (1965); Solar activity (1475);
Stellar activity (1580)

1. Introduction

The number of spots that emerge on the solar surface is
known to vary in a regular 11 yr cycle (Schwabe 1844).
Polarimetric observations of the Sun have revealed the
relationship between these structures and the solar magnetic
field (Hale 1908), with the interesting observation that the
magnetic polarity of sunspots switches signs every consecutive
cycle. This polarity reversal means that a complete magnetic
cycle spans 22 yr, twice the length of the Schwabe (amplitude)
cycle.

A stellar monitoring survey was conducted at Mount Wilson
Observatory for over 30 yr and led the way toward detecting
similar starspot cycles in the chromospheric activity of solar-
type stars, as measured by the Ca II H+K flux (Wilson 1978).
For the many main-sequence stars in which such cyclic
behavior was observed, Brandenburg et al. (1998) identified
two relationships between cycle length, rotation period, and
mean activity level, known as the active and inactive branches.
However, many stars since then have been found to present a
coexistence of long and short activity cycles, some of these
falling on both branches simultaneously, and some between
them (e.g., Boro Saikia et al. 2018).

For a few stars, the large-scale magnetic field has been
reconstructed using Zeeman Doppler imaging (ZDI) spanning
several years, allowing the detection of field topology
variations. On ξ Boo A, ò Eri and HN Peg, such variations
were found to be rapid and localized in time (Morgenthaler
et al. 2012; Jeffers et al. 2014; Boro Saikia et al. 2015).
Although τ Boo was originally thought to reverse its polarity
yearly, significantly longer than its 120 day S-index cycle, it
was found later that this discrepancy had arisen from poor time

sampling. Jeffers et al. (2018) discovered τBoo’s 240 day
magnetic cycle, the fastest ever observed, which coincided with
two complete consecutive chromospheric cycles. 61 Cyg A was
the first cool star beyond the Sun where a magnetic cycle was
detected in phase with its chromospheric cycle (Boro Saikia
et al. 2016); similar results were recently also confirmed in
HD 75332 (Brown et al. 2021) and 18 Sco.
In order to better trace the magnetic evolution of solar-type

stars, the Mount Wilson data set has been recently revisited on
several occasions, either by extending the data using multiple
other surveys while sticking to traditional periodogram
methods (e.g., Boro Saikia et al. 2018), or by introducing
new methods to take into account the nonsinusoidal and locally
harmonic nature of the cycles (e.g., Olspert et al. 2018). Indeed,
as is well known for the Sun, stellar activity cycles are not
perfectly harmonic, or even strictly periodic; variations in both
cycle length and amplitude are common and can make it
challenging to interpret the results of methods in the Fourier
domain.
As shown by Oláh et al. (2016), time-frequency analysis can

be used to reveal multiple and changing cycles in the Mount
Wilson survey data set. In this letter, we propose to extend this
idea by using fully adaptive time-frequency methods with the
specific purpose of disentangling multiple physically mean-
ingful components from the data.
The Hilbert–Huang Transform (HHT), based on the

Empirical Mode Decomposition (EMD; Huang et al. 1998),
is a data-driven technique that addresses this exact issue. The
goal of Hilbert–Huang analysis is to decompose a signal into a
finite sum of amplitude-modulated to frequency-modulated
(AM–FM) oscillations plus some monotonic trend. Such
oscillations, known as Intrinsic Mode Functions (IMFs),
present well-defined instantaneous values of amplitude and
frequency. These can be derived from their analytic signal
using the Hilbert transform.
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This method of obtaining a time-frequency representation
heavily contrasts with other traditional methods from the
literature. Linear methods based on inner products with a
predetermined family of signals, such as the Short-Term
Fourier Transform (STFT) or the Wavelet Transform, have
their resolution limited by the Heisenberg Uncertainty
Principle. On the other hand, the HHT is able to precisely
track single values of instantaneous frequencies for each
component, while also being agnostic to the specific signal
shape.

Many improvements to the original EMD algorithm have
been proposed to address different issues arising from the
original formulation. For a more in-depth review of the HHT
and EMD, see Huang & Shen (2005) and Huang & Attoh-
Okine (2005). In this letter, we use a combination of the
Complete Ensemble EMD with Adaptive Noise (CEEMDAN;
Colominas et al. 2014) and the postprocessing steps proposed
by Wu & Huang (2009). The instantaneous frequency is then
calculated on the resulting modes using the Normalized Hilbert
Transform (NHT; Huang et al. 2009).

Hilbert–Huang analysis has been able to extract and
characterize periodicities in the solar cycles from many activity
indicators, such as the sunspot number (Barnhart & Eichin-
ger 2011; Gao 2017), the 10.7 cm radio flux, and helioseismic
frequency shifts (Kolotkov et al. 2015).

The remaining parts of this letter are organized as follows: in
Section 2 we define our activity time series data sets both for
the Sun and for 61 Cyg A; next, Section 3 details our data-
driven multicomponent analysis method as well as the
preprocessing steps needed; Section 4 presents the results of
our experiments, and we conclude our discussion in Section 5.

2. Observations

For the Sun, the first observational data set used in our
analysis as a proxy for magnetic activity is the daily total
sunspot number series obtained from the World Data Center for
Solar Index and Long-term Solar Observations (WDC-SILSO)
at the Royal Observatory of Belgium.1 The data set spans
January 1818 to the present. The second data set is the monthly
averaged Ca II K emission index composite; derived from the
Kodaikanal, Sacramento Peak, and SOLIS/ISS observations
(Bertello et al. 2016, 2017; Egeland et al. 2017).

The S-index time series data for K dwarf 61 Cyg A is
composed of the long-term surveys from the NSO Mount
Wilson project (MW; Duncan et al. 1991; Baliunas et al. 1995)
and the solar and stellar activity program from the Lowell
observatory (SSS; Hall et al. 2007; Lockwood et al. 2007). We
also used data published by Boro Saikia et al. (2016) using the
NARVAL high-resolution spectropolarimeter and the data
presented in the radial velocity catalog from the California
Planet Search (CPS; Howard et al. 2010; Rosenthal et al. 2021).
We additionally determined the S-index from the ESPaDOnS
and NARVAL spectropolarimeter data from 2015 onwards
following the methodology described in Marsden et al. (2014).
These measurements span more than 50 yr of observations,
extending from mid-1967 through early 2018.

3. Hilbert–Huang Analysis

The goal of our method is to find a finite set of oscillatory
components that add up to the original data, while also
describing each individual component by its instantaneous
values of amplitude and frequency. To this end, our pipeline
consists of a preprocessing step to correct sampling issues,
followed by the actual decomposition of the signal, and a
postprocessing step to ensure the components meet certain
conditions needed for the Hilbert analysis to, in the final step,
extract their time-frequency representations.

3.1. Preprocessing

Although the EMD is a fully data-driven algorithm (meaning
that it makes no assumptions a priori on specific signal
models), it still performs poorly if the input signal is unevenly
sampled (see e.g., Barnhart et al. 2011). Therefore, we follow a
similar preprocessing approach to the one used by Kolláth &
Oláh (2009), in which the data is first downsampled to uniform
bins, and later upsampled with a cubic smoothing spline.
We bin each time series at 90 day intervals using a triangular

window to compute the averages and estimate the variances.
The exact value of the bin size has no strong impact on the
resulting signal, as long as it is within a reasonable distance
from the periods of interest; for stars with wildly different
rotation rates, this value should vary accordingly.
The binned data is then interpolated at 10 day intervals by a

regularized cubic spline with weights inversely proportional to
the bin variances. The resulting smoothed series preserves the
local time-frequency content of the original data to a high
extent, as demonstrated by Kolláth & Oláh (2009). Since there
are no significant gaps in the solar observations, the amount of
added information to fill in missing data is negligible. Even for
the 61 Cyg A data, which has a few minor gaps, the added
information is limited.

3.2. Decomposition

The EMD consists of an iterative algorithm in which each
mode is successively extracted through a sifting process. This
sifting iteratively updates the current mode by subtracting an
estimate of the local mean, corresponding to the average of the
upper and lower envelopes, which are taken as the spline
interpolations of the local maxima and minima. Convergence is
assessed through a stopping criterion that checks if the resulting
IMFs have the following properties:

1. the number of local extrema and the number of zero
crossings are equal (or differ by one);

2. the local mean is (close to) zero (almost) everywhere.

In other words, all local maxima must be positive, all local
minima must be negative, and their envelopes must be
symmetrical. After enough IMFs have been subtracted from
the original signal x(t) for the remaining data to be completely
monotonic, we can write the resulting decomposition as the
finite sum:

( ) ( ) ( ) ( )x t C t r t , 1
k

K

k
1

å= +
=

where each Ck(t) is one IMF and r(t) is the monotonic trend.
The local nature of EMD may result in mode mixing, i.e.,

similar oscillations being separated in different modes or vice-1 http://www.sidc.be/silso/datafiles

2

The Astrophysical Journal Letters, 945:L12 (6pp), 2023 March 1 Velloso et al.

http://www.sidc.be/silso/datafiles


versa. The improved algorithm used in this work is the
Complete Ensemble EMD with Adaptive Noise (CEEMDAN;
Colominas et al. 2014). Its main idea is to apply the EMD to an
ensemble of degraded copies of the original signal, each arising
from a different realization of additive white Gaussian noise.
The EMD then behaves more closely to a filter bank, and the
resulting modes are more regular; the decomposition of
spurious modes is also avoided.

Specifically, let  (·)k be an operator that returns the kth IMF
via EMD, then define(·) as the local mean operator:

 ( ) ( ) ( )x x x 21= -
Also, let w( i) be the ith white noise realization (i = 1,K,I).

Then, in each CEEMDAN iteration, we calculate the ensemble
average of the local mean:

 ( ( )) ( )( )q
I

q w
1

3k
i

I

k k k
i

1
1 1å b= +

=
- -

with q0= x and where βk are coefficients controlling the
relative energy of the introduced noise. The kth pseudo IMF Dk

is then found by the difference between consecutive averages:

( )D q q 4k k k1= --

3.3. Postprocessing

In the above analysis, we referred to the output of the
CEEMDAN algorithm as “pseudo IMFs.” This is due to the
fact that a sum of two different IMFs does not in general
preserve the necessary properties that define an IMF; in
particular, the ensemble averages computed during CEEM-
DAN cause the resulting Dk to lose such features.

Since these properties are important guarantees for the
assumptions that each component is a single AM–FM
oscillation with well-defined amplitudes and frequencies, a
postprocessing step is needed to transform the pseudo IMFs
into proper IMFs Ck.

In this letter, we formalize the generic steps proposed by Wu
& Huang (2009) in the following postprocessing algorithm:

 ( ) ( )C D r 5k k k1 1= + -

( ) ( )r r D C D r 6k k k k k k1 1= + - = +- -

with r0= 0. Since consecutive modes present oscillations on
similar timescales, this algorithm extracts a proper IMF from
each consecutive pair of pseudo IMFs, resulting in the same
number K of components. The final monotonic trend is given
by r(t)= rK(t)+ qK(t), the sum of the final step’s trends.

3.4. The Marginal Hilbert Spectrum

The main purpose of our analysis is not only to separate each
individual component of the time series signal, but also to
identify their underlying periodicities. Since the extracted IMFs
are not constrained to harmonic tones, but are, by construction,
single-mode signals, the instantaneous frequency is a better
measure for their time-varying periodicities.

We start by assuming each IMF can be written as an AM–

FM oscillation with an arbitrary, slow-varying amplitude and
phase functions ak(t) and fk(t):

( ) ( ) ( ( )) ( )C t a t tcos 2 7k k kpf=

The demodulation of the AM and FM subcomponents can be
done with stable results by using the Local Mean

Decomposition (LMD; Smith 2005). This method is similar
in nature to the EMD, but it decomposes a signal into a sum of
Product Functions (PFs):

( ) ( ) ( ) ( ) ( )x t A t F t m t 8
j

J

j j
1

å= +
=

where Aj and Fj correspond to the AM and FM factors of each
PF and m is the local mean residue. Due to the nature of the
stopping criteria for the EMD, Equation (7) is only true as an
approximation, while Equation (8) holds whenever the LMD
converges; however, the LMD can diverge when processing
arbitrarily complex signals, which is why it is only applied here
to the already simplified IMFs. Other examples of this joint
EMD-LMD technique can be found in Yue et al. (2020).
A single PF can thus very closely approximate each IMF,

and we can write:

( ) ( ) ( ) ( ) ( )C t A t F t t 9k k k km= +

where μk(t) is very close to zero everywhere, and can locally
account for some edge effects of the EMD. We therefore
associate ak = Ak and ( ) Fcos 2 k kpf = and derive the time-
varying instantaneous frequency fk kf= ¢ by Hilbert-transform-
ing the FM component (Huang et al. 2009). The Hilbert spectra
of each mode can hence be defined as the distribution of the
instantaneous frequencies weighted by the instantaneous
squared amplitudes.

4. Results and Discussion

4.1. Solar Cycles

To validate our methods, we tested the extent of our ability
to recover multiple, distinct cycles on solar data using two
different observational proxies, as detailed in Section 2: the
daily total sunspot number series from 1818 to 2021, and the
composite K-line emission index from 1907 to 2017 (Bertello
et al. 2016; Egeland et al. 2017), hereafter referred to as the K-
index.
Figure 1 presents the result of our decomposition of solar

activity data. The K-index is shown to correlate strongly with
the sunspot number counts, and for both series our analysis
identifies three main modes: the first one at ≈11 yr, another one
at twice that period, and a longer ≈90 yr cycle. Although the K-
index series is too short to resolve what appears to be the
Gleissberg cycle, its trend component can be seen to correlate
very well with the latter half of the final sunspot IMF, which
indicates that this method is able to identify long-term trends
and potential analogs of the solar Gleissberg cycle within the
relatively short spectroscopic time series currently available for
other stars.
It is reassuring to notice that the amplitude of the primary

cycle seems to be modulated in a shape very similar to the
Gleissberg component, which is to be expected if these
components truly represent the underlying physical processes.
Also, the secondary cycle appears to capture the empirical
Gnevyshev–Ohl rule, which dictates that odd solar cycles tend
to be stronger than even ones (Gnevyshev & Ohl 1948;
Hathaway 2015). The underlying cause of this observed
behavior is thought to be related to the ≈22 yr Hale magnetic
cycle, but the connection is not yet entirely understood.
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4.2. 61 Cygni A

We also applied our decomposition technique to the much
shorter time series of 61 Cyg A S-index measurements. The
composition of observations from different instruments is
shown in the top-left panel of Figure 2 together with the
smooth interpolation resulting from our preprocessing steps.
The remaining panels of Figure 2 present the three best-defined
cyclic components found by the application of CEEMDAN and
their corresponding Hilbert spectra. Interestingly, besides the
well-known ≈8 yr long chromospheric activity cycle (e.g.,
Baliunas et al. 1995; cycle 1), a component with a period about
three times as long is also well separated (cycle 2). This
component can be visually identified in the original data as a
variation in activity maxima repeating itself in a pattern every
three consecutive cycles. Such behavior is reminiscent of the
solar Gnevyshvev–Ohl rule, except with a period ≈3 times
rather than twice that of the activity cycle.

This star had its large-scale magnetic field detected via ZDI
in six different epochs ranging from 2007 to 2015 (Boro Saikia
et al. 2016) and six more epochs from 2015 to 2018 (Boro
Saikia et al. 2018). Its magnetic field polarity was found to flip
twice between the first and last observation, indicating the

presence of a Hale-like magnetic polarity cycle in this star.
Those polarity measurements are shown in Figure 2 as vertical
lines, colored according approximately to the average field
polarity and intensity at these epochs. An inversion can be seen
to occur between the timeframes of two chromospheric activity
minima, in agreement with the hypothesis of a ≈15 yr long
magnetic cycle. However, it is also important to note that a
very short baseline was used to draw this inference, and the few
data points we have cannot exclude the possibility that the
Hale-like polarity cycle is actually linked to the observed three-
cycle Gnevyshev–Ohl pattern, with a somewhat longer
inversion period of ≈11 years. The predictions of both these
hypotheses are shown in Figure 2 as the colored red and blue
backgrounds in the two cyclic components.

5. Conclusions

We introduced a fully data-driven approach to separate
different coexisting activity cycle components using the
Hilbert–Huang transform that is immune to the nonstationary
variations in cycle lengths and amplitudes known to exist.
This methodology was shown to be capable of not only

recovering the mean periods of known solar cycles at different

Figure 1. Result of CEEMDAN for the Sun. The sunspot number is shown in blue and the K-index is in orange. The top-left panel shows the preprocessed input data.
The right-side panels show the Hilbert spectra corresponding to their respective time-domain components.

4

The Astrophysical Journal Letters, 945:L12 (6pp), 2023 March 1 Velloso et al.



timescales, but also the time-domain characteristics of these
components, such as amplitude variations, in agreement with
expectations.

For the K dwarf 61 Cygni A, our method confirms its
Schwabe-like 8 yr cycle and also presents evidence of a
potential three-cycle long Gnevyshev–Ohl-like behavior,
shown to be possibly tied to a polarity reversal. A confirmation
of this result would be of some importance in the sense that (i)
it strengthens the relationship between the solar Gnevyshev–
Ohl rule and the Hale cycle, and (ii) it shows that we are able to
detect the activity signature of magnetic polarity changes in
stellar spectroscopic calcium data.
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Appendix
On the Dependence of the Results on the Choice of

Smoothing

While describing our proposed pipeline and its main
advantages, we highlighted the fact that it was a fully adaptive
and data-driven method and that it does not rely on previous
knowledge surrounding the data set. We also claimed that, even
though there apparently is need of a choice surrounding the
smoothing procedures during the preprocessing steps, there
was no strong effect on the results as long as the bin sizes were
chosen within some reasonable interval. This short appendix
intends to justify such a claim.
The main parameter that controls how much the input data is

smoothed out is the size of the bins used for averaging.
Figure 3 shows an example when the bins are almost twice as
spaced out as what was used in the paper (see Figure 2). The
spikes get smoothed out and the high-frequency residuals
found by the decomposition tend to disappear, but the overall
structure of the two main cycles stays closely similar. The same
qualitative conclusions can be taken out from this, thanks to the
adaptive filtering nature of the method.
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Figure 2. Result of our analysis for 61 Cyg A. The colored vertical lines indicate the epochs for which its large-scale magnetic geometry was reconstructed using ZDI
(Boro Saikia et al. 2016, 2018). The background colors indicate predicted polarities for a hypothesis of a complete magnetic reversal taking three times cycle 1 (shown
in the Cycle 2 panel) or two times cycle 1 (as in the Sun, shown in the Cycle 1 panel).
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