Asian Journal of Orthopaedic Research

3(4): 31-43, 2020; Article no.AJORR.59449

Innovations in Spinal Hemangioblastoma Management

Akul Munjal^{1*}, Vamsi Reddy², Kashif Malik³, Ananya Munjal⁴, Uzondu Agochukwu¹ and Kelly Homlar¹

> ¹Department of Orthopedics, Medical College of Georgia, Georgia. ²Department of Neurosurgery, Medical College of Georgia, Georgia. ³Department of Anesthesia, Medical College of Georgia, Georgia. ⁴Department of Surgery, Medical College of Georgia, Georgia.

Authors' contributions

This work was carried out in collaboration among all authors. Author AM designed the study and performed the research. The manuscript was written in conjunction with the other authors.

Article Information

Editor(s): (1) Dr. Ikem, Innocent Chiedu, Obafemi Awolowo University, Nigeria. (2) Dr. Parth Trivedi, C.M. Patel College of Physiotherapy, India. (2) Dr. Parth Trivedi, C.M. Patel College of Physiotherapy, India. (1) Monireh Azizi, Ilam University of Medical Sciences, Iran. (2) Dr. Mahadeo B. Shinde, Krishna Institute of Medical Sciences "Deemed To Be University", India. Complete Peer review History: <u>http://www.sdiarticle4.com/review-history/59449</u>

Mini-review Article

Received 10 May 2020 Accepted 17 July 2020 Published 18 July 2020

ABSTRACT

Introduction: Spinal hemangioblastomas are benign, rare neoplasms of spinal cord vasculature. They may occur as solitary lesions or with associated intracranial hemangioblastomas, this association is seen in Von Hippel Lindau syndrome (VHL).

Aims: This literature review serves to highlight various innovative therapeutic modalities used to treat this pathology.

Methods: The articles were obtained though PubMed Central or Google scholar, initially more than 30 articles were selected; however, additional only: clinical trials, retrospective studies, or case series/ reports were selected. This resulted in final analysis of 20 articles.

Results: Surgical resection is carried out with either an: open or microsurgical approach with either an endoscopic or minimally invasive technique. The specific surgical intervention depends on the spread of the neoplasm. Pre-operative angiography is a critical predictor of surgical success. Arterial embolization may also be conducted preoperatively to minimize neoplasm vascularity. Stereotactic radiosurgery often conducted with gamma knife or LINAC, has remarkably improved treatment. Pharmacologic therapies.

Keywords: Spine; hemangioblastoma; oncology; orthopedics-oncology; Von-Hippel Lindau.

1. INTRODUCTION

Several histologically diverse tumors affect the spinal cord, the most common include meningiomas, schwannomas (nerve sheath tumors), astrocytomas and ependymomas. Collectively, these represent more than 75% of primary spinal cord tumors [1]. spinal hemangioblastoma constitutes 2-3% of spinal tumors [2]. Hemangioblastomas may arise from any central nervous system (CNS) structure. Though benign, they may be associated with a morbidity likely secondary to compression.

Spinal hemangioblastoma is strongly associated with Von-Hippel Lindau Syndrome (VHL). [3]. VHL is a genetic disorder characterized by multiple tumors within the body, including renal cell carcinomas, pheochromocytomas, and CNS hemangioblastomas. Among the latter, spinal hemangioblastomas contribute up to 40% of the overall incidence, with an increasing incidence among the elderly (>60 years of age). Studies demonstrated have that spinal hemangioblastomas in cases of VHL rarely occur in isolation and are often associated with other hemangioblastomas i.e. within the cerebellum, medulla, pons etc [4]. Presenting symptoms of a spinal hemangioblastoma depend upon tumor location (thoracic, cervical region etc.); however patients usually experience some degree of back pain, limb weakness of paresthesia [5]. Rarely life-threatening subarachnoid hemorrhages may occur.

The diagnosis of spinal hemangioblastoma is usually suspected with a careful history, and confirmed with radio-imaging techniques i.e. CT or MRI (with gadolinium contrast) scans. Imaging may also illustrate the presence of a syrinx, alongside the tumor. Angiography may also be useful in determination of the extent of the tumor's angiogenesis. Total surgical resection which may be carried out with either an **open** or an endoscopic approach is the mainstay of treatment.

1.1 Open Spine Surgery

C. Fenger was the first to attempt open spinal surgery for tumor resection in the late 19th century. However, Eiselsberg then later C. Elsberg (in the 20th century) performed the first successful open surgery for tumor resection. Later, Fred Epstein et al also removed spinal

tumors in pediatric patients (2003). [6] The open spinal approach is conventionally done through a large midline incision in the back, microsurgical instrumentation is utilized for complete tumor resection. Intraoperative MRI imaging, and neurophysiological analysis are often used to assist the intraoperative management [6, 7].

1.2 Endoscopic Surgery

Minimally Invasive Spinal Surgery involves a small incision in the back. Most literature indicates that both open and endoscopic methods yield similar results however, minimally invasive surgery is associated with a significantly lower risk of bleeding, thus minimizing scarring and promoting rapid recovery [8].

Depending upon the size of the tumor, spinal surgery may be performed via laminectomy or hemilaminectomy. Hemilaminectomy is preferable intervention as it minimizes risk to the vertebral column and reduces operative blood loss. [9] Some surgeons emphasize preoperative chemoembolization of vessels minimizing tumor growth. Chemicals such as polyvinyl alcohol (PVA), n-butyl cyanoacrylic acid (NBCA) etc. may be used for chemoembolization [10].

1.3 Stereotactic Radiosurgery

Neuro-oncological advancements have enabled the use of stereotactic radiosurgery for preoperative reduction of hemangioblastomas. Developed by Horsley & Clarke in the early 1900s, it was not until the latter 20th century that radiosurgery became widely acknowledged as a major treatment modality for CNS tumors. Gamma Knife radiosurgery and Linear Accelerator (LINAC) are the primary modes of administering radiation and shrinking tumors by direct exposure to radiation beams [11].

2. MATERIALS AND METHODS

The articles for this literature review were obtained through PubMed Central (PMC) or Google Scholar, with the keywords: Spinal Hemangioblastoma; Management of spinal hemangioblastoma; Minimally Invasive Surgery for spinal hemangioblastoma. Initially more than 30 articles were selected. Further selection criteria included clinical trials, retrospective studies or case series / case reports (from 2000onwards). Systematic reviews and meta-analysis related articles were excluded from further analysis. After exclusion, findings from 20 original articles have been assessed in this final review.

3. RESULTS

Selected articles are systematically summarized. The articles have been further categorized by treatment modality (Tables 1-4). Table 1 addresses surgical interventions, Table 2 address radio-surgical interventions, Table 3 addresses pharmacologic interventions, and Table 4 addresses chemoembolization and angiography.

4. DISCUSSION

This review analyzes several novel surgical and non-surgical options for managing spinal hemangioblastomas. Surgical measures include open microsurgical procedure, and the newly developed minimally invasive endoscopic operation. Preoperative embolization techniques and intraoperative angiography may help achieve surgical excision. Apart from surgery, radiosurgery and pharmacological agents such as anti-angiogenic Bevacizumab may be clinically useful.

Studies show pre-operative MRI helps in the diagnosis of spinal hemangioblastoma. Baker, K. B et al concluded that spinal MRI with contrast accurately illustrates tumors [32]. Contrastenhanced MRIs may distinguish intramedullary and extramedullary spinal hemangioblastomas [33]. In addition to neuroimaging, preoperative angiography may play an important role in assessing tumor vascularity. Deng, X., Wang, K et al [34] analyzed 92 patients with hemangioblastoma that underwent 102 spinal surgeries. 13 patients were selected for Digital Subtraction Angiography (DSA) while 15 patients underwent three-dimensional CT Angiography (CTA), preoperatively. Both groups of patients had remarkable feeding vessels to the tumor. However, this technique was directly responsible for at least 1 complication of bilateral lower limb paresis, questioning the procedure's safety.

Table 1. Surgical intervention of spinal Hemangioblastoma

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
1.	Surgical Management of Isolated Hemangioblastomas of the Spinal Cord [12]	Chanland Roonprapunt, V. Michelle Silvera et al	Neurosurgery	2001	19 spinal hemangioblastoma cases were reviewed. Each patient underwent spinal MRI & angiography followed by posterior laminectomy. This technique resulted in complete tumor removal. Nearly 70% of patients improved functional status, while the remaining stabilized and did not deteriorate with subsequent follow-up.
2.	Intramedullary hemangioblastomas: timing of surgery, microsurgical technique and follow-up in 23 patients [13]	A. Boström, F-J. Hans et al	European Spine Journal	2008	This study reviewed 23 intramedullary hemangioblastoma cases. Most tumors were located within the cervico-thoracic region. Almost 1/3 rd of patients had a VHL diagnosis. Patients underwent

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
					microsurgical resection via hemilaminectomy, partial hemilaminectomy or laminectomy. On follow-up, 18/23 patients stabilized with 5 patients demonstrating
3.	Safety and Efficacy of Intradural Extramedullary Spinal Tumor Removal Using a Minimally Invasive Approach [14]	Richard J. Mannion, Adrian M. Nowitzke et al	Operative Neurosurgery	2011	significant recovery. In this study, 13 intradural spine tumors were resected via hemilaminectomy with neuronavigation assistance. This minimally invasive surgery resulted in complete tumor resection in 12/13 patients. The operation was well tolerated in most patients. One case had to be converted to an open approach because of tumor location.
4.	Early microsurgical treatment for spinal hemangioblastomas improves outcome in patients with von Hippel–Lindau disease [15]	Ali Harati, Jarno Satopää et al	Surgical Neurology International	2012	In this study, 17 patients with hemangioblastomas (cervical, thoracic & lumbar) underwent micro-surgical operations. 11 patients had underlying VHL. Every operation except 1 resulted in complete tumor excision. The majority of patients did not demonstrate post- operative neurologic
5.	Surgical Outcome of Spinal Cord Hemangioblastomas [16]	Chang Hyun Park, Chang- Hyun Lee et al	Journal of Korean Neurosurgica I Society	2012	deficits. 16 patients with spina hemangioblastoma were assessed in this study. 10 patients underwent gross total resection while the other 6 underwent partial resection. Every operation

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
6.	Intramedullary Hemangioblastomas : Surgical Results in 16 Patients [17]	Andrei F Joaquim, Enrico Ghizoni et al	Neurosurgica I Focus	2015	involved microsurgical technique. 19% of patients demonstrated statistically significant postoperative improvement. The condition of the remaining either stabilized or worsened. In this study, 16 patients with intramedullary hemangioblastoma underwent microsurgical operations. Of the 16 patients, 7 had VHL. Most tumors were localized in the cervical & thoracic spine. Gross resection was
7.	Comparison of Open and Minimally Invasive Surgery for Intradural- Extramedullary Spine Tumors [18]	Albert P Wong, Rishi R Lall et al	Neurosurgica I Focus	2015	achieved in nearly all patients. Post- operatively, most patients stabilized. 2 patients demonstrated significant neurologic improvement. One patient rapidly declined clinically. Thus, the authors concluded that post- operative improvement was related to pre- operative status. This retrospective analysis included 45 patients with intradural spinal tumors. They were surgically resected with either an open (18) or a minimally invasive (27) surgery. The minimally invasive surgery resulted in decreased hospital duration, and intraoperative blood loss. Complete excision was more likely achieved with

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
8.	Diagnosis and microsurgical treatment of spinal hemangioblastoma [19]	Xuezhen Li, Jianzhen Wang et al	Neurological Sciences	2016	the open technique. In this retrospective study, microsurgical resection was performed on 25 patients with spinal hemangioblastoma. Nearly 2/3 rd of patients had underlying VHL. MRI & intraoperative fluoroscopic angiography aided in mapping the surgical course. Every operation resulted in complete tumor removal. 22 of the patients demonstrated significant clinical improvement at 1
9.	Functional Outcome After Resection of Von Hippel-Lindau Disease-Associated Cauda Equina Hemangioblastomas : An Observational Cohort Study [20]	Gautam U. Mehta, Blake K. Montgomery et al	Operative Neurosurgery	2017	week follow up. In this cohort study, 15 patients with spinal hemangioblastomas underwent resection via a laminectomy. More than 90% of operations resulted in complete or resection. On follow-up, 83% of patients stabilized, 11% showed significant improvement and the remaining worsened
10.	Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long- term outcome [21]	Sebastian Siller, Andrea Szelényi	Journal of Neurosurgery	2017	clinically. The authors conducted a retrospective analysis with 24 patients with spinal hemangioblastoma, mostly located in the cervical region. All patients underwent microsurgical tumor resection. Most surgical interventions were accomplished with either hemilaminectomy or laminectomy. 95% of operations resulted in complete tumor

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
					resection. Intraoperative neurophysiologic studies monitored neurologic functionality. After long term follow-up, almost 90% of patients demonstrate improvement in tumo grades. Moreover, a relationship between negative intraoperative neurophysiology and poor patient prognos was observed.
11.	Minimally Invasive Microsurgical Resection of Primary, Intradural Spinal Tumors is Feasible and Safe: A Consecutive Series of 83 Patients [22]	Maja Formo, Charlotte Marie Halvorsen, Daniel Dahlberg et al	Neurosurgery	2018	83 patients with various spinal tumors were treated with minimally invasive surgery, 2 hemangioblastomas were diagnosed. Complete tumor removal was achieve in nearly 90% of operations. 11% of patients had complications (CSF leakage, surgical infections etc.) On follow-up, more than 90% of patients retained the ability to perform daily functions.
12.	Minimally invasive resection of spinal hemangioblastoma: feasibility and clinical results in a series of 18 patients [23]	Marie T. Krüger, Christine Steiert et al	Journal of Neurosurgery	2019	In this study 18 patients with 19 hemangioblastomas were assessed. Nearly 90% of patients had VHL. A Minimally invasive surgery was performed on all patients. Pre and post-operative patien status was assessed with the McCormick grading system. Complete excision was achieved in all cases with no complications.

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
					Following surgery, tumor grade stabilized or improved in ~95% cases.

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
1.	Image-guided linear accelerator- based spinal radiosurgery for hemangioblastoma [24]	Michael T. Selch, Steve Tenn et al	Surgical Neurology International	2012	These authors used a linear accelerator (LINAC), to perform stereotactic radiosurgery to treat spinal hemangioblastomas in 9 patients. Tumors were mostly localized to the cervicothoracic region. 5 patients included had an underlying VHL diagnosis. Tumor radiation intensity was set around 12 Gy. On follow-up, tumor growth stabilized in ~90% of patients. No patients experienced complications of radiotherapy.
2.	Image-guided stereotactic radiosurgery for treatment of spinal hemangioblastoma [25]	James Pan, Allen L. Ho et al	Journal of Neurosurgery	2017	These authors used Cyber Knife to treat 46 spinal hemangioblastomas in 28 patients . Almost 50% of patients had underlying VHL. A radiation dose between 15-35 Gy was used. Tumor stabilization or regression was achieved in >90% patients. Furthermore, no patients suffered from complications.

Table 2. Radiosurgery of spinal Hemangioblastoma

Surgical dissection success is directly related to surgical accessibility. Deng, X et al achieved total tumor resection in 94% of tumors. Nearly 40% cases demonstrated postoperative neurologic improvement. Moreover, long-term follow-up revealed incomplete tumor resection was associated with an unfavorable patient prognosis (p < 0.05). Wind, J. J., Lonser, R. R et al [35] assessed demonstrated improved clinical outcomes in patients with VHL that underwent complete surgical excision. Van Velthoven, et al demonstrated improvement or stabilization in all patients in neurological deficits following resection [36].

Stereotactic radiosurgery has demonstrated efficacy in treating hemangioblastoma. Chang, S. D et al showed the effectiveness of LINAC radiotherapy on tumor regression to be slightly more than 70%. [37] Some studies depict a cure rate as high as 90% on initial evaluation. [35].

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
1.	Bevacizumab for the treatment of surgically unresectable cervical cord hemangioblastoma: a case report [26]	Ayman I Omar	Journal of Medical Case Reports	2012	This case-report involved treatment of a cervical hemangioblastoma with the VEGF inhibitor Bevacizumab . The lesion was deemed unfit for surgical excision. Post-treatment MRI scans demonstrated tumor regression, with an accompanying improvement in neurophysiological status.
2.	Antiangiogenic Treatment for Multiple CNS Hemangioblastomas [27]	Riklin C, Seystahl K et al	Onkologie	2012	This study included 2 patients with hemangioblastomas treated with Bevacizumab. The radiology of both patients improved post treatment.

Table 3. Pharmacological intervention of spinal Hemangioblastoma

Table 4. Chemoembolization and intraoperative angiography in management of spinalHemangioblastoma

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
1.	Surgical Technique of Temporary Arterial Occlusion in the Operative Management of Spinal Hemangioblastomas [28]	Aaron J.Clark, Daniel C.Lu et al	World Neurosurgery	2010	The authors carried out a retrospective analysis of 20 spinal hemangioblastoma cases. At least 11 patients had VHL. Every tumor was completely excised with a laminectomy approach. Prior to surgery, 6 patients underwent preoperative angiography. Five patients subsequently underwent chemoembolization. Follow-up demonstrated stabilization in 13 patients, improvement in 5 patients, and worsening in 2 patients. In 5 patients' temporary arterial occlusion was achieved with an aneurysm clip, to differentiate vessels supplying the tumor from those supplying the normal cord.

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
2.	Application of intraoperative indocyanine green videoangiography for resection of spinal cord hemangioblastoma: Advantages and limitations [29]	Shuyu Hao, Dezhi Li et al	Journal of Clinical Neuroscience	2013	Surgeons used angiography with Indocyanine green dye in 7 patients with spinal hemangioblastoma preoperatively. The vascularity of the tumor was well visualized in all except 2 patients. Total resection was achieved in 6 patients while 1 patient underwent partial removal. Post- operative complications were not observed in
3.	Role of Preoperative Embolization of Intramedullary Hemangioblastoma [30]	G Saliou, L Giammattei	Neurochirurgie	2017	any patient. This study involved Seven patients with hemangioblastoma of which 6 had underlying VHL. Pre-surgical embolization was achieved with histoacryl glue agent. 1 patient developed vertebrobasilar infarction/cerebellar dysfunction. Following embolization, complete resection was achieved in 6/7 cases. Due to complications, the authors emphasized that chemoembolization should not be used ubiquitously but should be restricted to certain
4.	Surgical Treatment of Vascular Intramedullary Spinal Cord Lesions [31]	George M Ghobrial, Jason Liounakos et al	Cureus	2018	cases only. Thirty-six patients with intramedullary spinal tumors were isolated, of which 20 were diagnosed with spinal hemangioblastomas. Prior to surgical resection, angiography and chemoembolization was performed in several cases. Microsurgical laminectomy was performed on all patients. On follow-up none of the patients

Sr. No.	Article	Authors	Journal	Year of Publication	Main Findings
					developed further neurologic deficits. Thus, the authors concluded that preoperative angiography & embolization were safe in the management of spinal vascular lesions.

Several authors stress the need for advanced follow-up in patients with a single spinal hemangioblastoma. Genetic analysis of VHL disease should be carried out in cases of hemangioblastoma. Moreover, patients with VHL should undergo annual MRI or ultrasonography to detect insidious intracranial (cerebellar or supratentorial tumors), retinal (hemangioblastomas) spinal or abdominal (renal cell carcinoma, pheochromocytomas etc.) masses [38].

5. CONCLUSION

hemangioblastomas Spinal may occur sporadically or in association with Von Hippel Lindau syndrome. Management has improved tremendously in the past 20 years. Minimally invasive surgical therapy accompanied by preoperative angiography and/or generally chemoembolization, results in uncomplicated total or subtotal resection of these vascular tumors. Moreover, radiosurgical methods such as gamma knife radiosurgery & LINAC have demonstrated positive results. Chemotherapy with anti-VEGF agents mav become a more common treatment modality. Collectively, the literature demonstrates promising data that results in not only decreased mortality rates, but also improved quality of life for patients with spinal hemangioblastomas.

CONSENT

It is not applicable.

ETHICAL APPROVAL

It is not applicable.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

- Schellinger KA, Propp JM, Villano JL, McCarthy BJ. Descriptive epidemiology of primary spinal cord tumors. Journal of Neuro-oncology. 2008;87(2):173-179.
- Westwick HJ, Giguère JF, Shamji MF. Incidence and prognosis of spinal hemangioblastoma: A surveillance epidemiology and end results study. Neuroepidemiology. 2016;46(1):14-23.
- 3. Gläsker S. Central nervous system manifestations in VHL: genetics, pathology and clinical phenotypic features. Familial Cancer. 2005;4(1):37-42.
- Kanno H, Yamamoto I, Nishikawa R, Matsutani M, Wakabayashi T, Yoshida J, Shuin T. Spinal cord hemangioblastomas in von Hippel–Lindau disease. Spinal Cord. 2009;47(6):447-452.
- Capone F, Profice P, Pilato F, Zollino M, Colosimo C, Di Lazzaro V. Spinal hemangioblastoma presenting with low back pain in pregnancy. The Spine Journal. 2013;13(12):e27-e29.
- Sala F, Bricolo A, Faccioli F, Lanteri P, Gerosa M. Surgery for intramedullary spinal cord tumors: The role of intraoperative (neurophysiological) monitoring. European Spine Journal. 2007; 16(2):130-139.
- Scullen T, Riffle J, Koga S, Kalyvas J. Novel technique of coregistered intraoperative computed tomography and preoperative magnetic resonance imaging and diffusion tensor imaging navigation in spinal cord tumor resection. Ochsner Journal. 2019;19(1):43-48.
- Yang Z, Yang Y, Zhang Y, Zhang Z, Chen, Y, Shen Y, Sun H. Minimal access versus open spinal surgery in treating painful spine metastasis: A systematic review. World Journal of Surgical Oncology. 2015; 13(1):68.

- Yu Y, Zhang X, Hu F, Xie T, Gu Y. Minimally invasive microsurgical treatment of cervical intraspinal extramedullary tumors. Journal of Clinical Neuroscience. 2011;18(9):1168-1173.
- Sultan A, Hassan T, Aboul-Enein H, Mansour O, Ibrahim T. The value of preoperative embolization in large and giant solid cerebellar hemangioblastomas. Interventional Neuroradiology. 2016;22(4): 482-488.
- Daly ME, Choi CY, Gibbs IC, Adler Jr J. R, Chang SD, Lieberson RE, Soltys SG. Tolerance of the spinal cord to stereotactic radiosurgery: Insights from hemangioblastomas. International Journal of Radiation Oncology* Biology* Physics. 2011;80(1):213-220.
- Roonprapunt C, Silvera VM, Setton A, Freed D, Epstein FJ, Jallo GI. Surgical management of isolated hemangioblastomas of the spinal cord. Neurosurgery. 2001;49(2):321-328.
- Boström A, Hans FJ, Reinacher PC, Krings T, Bürgel U, Gilsbach JM, Reinges MHT. Intramedullary hemangioblastomas: Timing of surgery, microsurgical technique and follow-up in 23 patients. European Spine Journal. 2008;17(6):882-886.
- Mannion RJ, Nowitzke AM, Efendy J, Wood MJ. Safety and efficacy of intradural extramedullary spinal tumor removal using a minimally invasive approach. Operative Neurosurgery. 2011;68(suppl_1):ons208ons216.
- Harati A, Satopää J, Mahler L, Billon-Grand R, Elsharkawy A, Niemelä M, Hernesniemi J. Early microsurgical treatment for spinal hemangioblastomas improves outcome in patients with von Hippel–Lindau disease. Surgical neurology international. 2012;3.
- Park CH, Lee CH, Hyun SJ, Jahng TA, Kim HJ, Kim KJ. Surgical outcome of spinal cord hemangioblastomas. Journal of Korean Neurosurgical Society. 2012;52(3): 221.
- Joaquim AF, Ghizoni E, dos Santos MJ, Valadares MGC, da Silva FS, Tedeschi H. Intramedullary hemangioblastomas: surgical results in 16 patients. Neurosurgical Focus. 2015;39(2):E18.
- Wong AP, Lall RR, Dahdaleh NS, Lawton CD, Smith ZA, Wong RH, Fessler RG. Comparison of open and minimally invasive surgery for intradural-

extramedullary spine tumors. Neurosurgical Focus. 2015;39(2):E11.

- Li X, Wang J, Niu J, Hong J, Feng Y. Diagnosis and microsurgical treatment of spinal hemangioblastoma. Neurological Sciences. 2016;37(6):899-906.
- Mehta GU, Montgomery BK, Maggio DM, Chittiboina P, Oldfield EH, Lonser RR. Functional outcome after resection of von hippel-lindau disease-associated cauda equina hemangioblastomas: An observational cohort study. Operative Neurosurgery. 2017;13(4):435-440.
- Siller S, Szelényi A, Herlitz L, Tonn JC, Zausinger S. Spinal cord hemangioblastomas: significance of intraoperative neurophysiological monitoring for resection and long-term outcome. Journal of Neurosurgery: Spine. 2017;26(4):483-493.
- Dahlberg D, Halvorsen CM, Lied B, Helseth E. Minimally invasive microsurgical resection of primary, intradural spinal tumours using a tubular retraction system. British Journal of Neurosurgery. 2012;26(4):472-475.
- Krüger MT, Steiert C, Gläsker S, Klingler JH. Minimally invasive resection of spinal hemangioblastoma: feasibility and clinical results in a series of 18 patients. Journal of Neurosurgery: Spine. 2019;31(6):880-889.
- 24. Selch MT, Tenn S, Agazaryan N, Lee SP, Gorgulho A, De Salles AA. Image-guided linear accelerator-based spinal radiosurgery for hemangioblastoma. Surgical neurology International. 2012;3.
- Pan J, Ho AL, D'Astous M, Sussman ES, Thompson PA, Tayag AT, Chang SD. Image-guided stereotactic radiosurgery for treatment of spinal hemangioblastoma. Neurosurgical Focus. 2017;42(1):E12.
- Omar AI. Bevacizumab for the treatment of surgically unresectable cervical cord hemangioblastoma: a case report. Journal of Medical Case Reports. 2012;6(1):238.
- 27. Riklin C, Seystahl K, Hofer S, Happold C, Winterhalder R, Weller M. Antiangiogenic treatment for multiple CNS hemangioblastomas. Oncology Research and Treatment. 2012;35(7-8):443-445.
- Clark AJ, Lu DC, Richardson RM, Tihan T, Parsa AT, Chou D, Berger MS. Surgical technique of temporary arterial occlusion in the operative management of spinal hemangioblastomas. World Neurosurgery. 20101;74(1):200-205.

- 29. Hao S, Li D, Ma G, Yang J, Wang G. Application of intraoperative indocyanine green videoangiography for resection of spinal cord hemangioblastoma: advantages and limitations. Journal of Clinical Neuroscience. 2013;20(9):1269-1275.
- Saliou G, Giammattei L, Ozanne A, Messerer M. Role of preoperative embolization of intramedullary hemangioblastoma. Neurochirurgie. 2017; 63(5):372-375.
- Ghobrial GM, Liounakos J, Starke RM, Levi AD. Surgical treatment of vascular intramedullary spinal cord lesions. Cureus. 2018;10(8).
- Baker KB, Moran CJ, Wippold FJ, Smirniotopoulos JG, Rodriguez FJ, Meyers SP, Siegal TL. MR imaging of spinal hemangioblastoma. American Journal of Roentgenology. 2000;174(2): 377-382.
- Imagama S, Ito Z, Wakao N, Sakai Y, Kato F, Yukawa Y, Muramoto A. Differentiation of localization of spinal hemangioblastomas based on imaging and pathological findings. European Spine Journal. 2011;20(8):1377.

- Deng X, Wang K, Wu L, Yang C, Yang T, Zhao L, Xu Y. Intraspinal hemangioblastomas: analysis of 92 cases in a single institution. Journal of Neurosurgery: Spine. 2014;21(2):260-269.
- 35. Wind JJ, Lonser RR. Management of von Hippel–Lindau disease-associated CNS lesions. Expert review of neurotherapeutics. 2011;11(10):1433-1441.
- Van Velthoven V, Reinacher PC, Klisch J, Neumann HP, Gläsker S. Treatment of intramedullary hemangioblastomas, with special attention to von Hippel-Lindau disease. Neurosurgery. 2003;53(6):1306-1314.
- Chang SD, Meisel JA, Hancock SL, Martin DP, McManus M, Adler JR. Treatment of hemangioblastomas in von Hippel-Lindau disease with linear accelerator-based radiosurgery. Neurosurgery. 1998;43(1): 28-34.
- Bamps S, Van Calenbergh F, De Vleeschouwer S, Van Loon J, Sciot R, Legius E, Goffin J. What the neurosurgeon should know about hemangioblastoma, both sporadic and in Von Hippel-Lindau disease: A literature review. Surgical Neurology International. 2013;4.

© 2020 Munjal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history: The peer review history for this paper can be accessed here: http://www.sdiarticle4.com/review-history/59449