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Abstract

In this paper, the notion of a relative extension of continuous mappings is defined. The relative
extension of continuous mappings is the generalization of the notion of a relative retract in
topological spaces. The relative extension of continuous mappings will be applied to fixed point
theory.
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1 Introduction

In [1] we have introduced the notion of a relative retract in metric spaces and defined the class
of absolute relative retracts (ARR) and absolute neighborhood retract (ANRR). The relative
retracts are an essential generalization of the retracts in the sense of Borsuk. In papers [1, 2,
3] their properties are studied with the use of new topological tools (relative homotopy, relative
contractability). Relative retracts applied to fixed point theory, to the theory of coincidence (see
[1, 2]) and to the study of global and local properties of metrizable spaces (see [3]). In this paper we
define the relative extension of continuous maps, that is, the generalization of the notion of relative
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retracts in topological spaces (not necessarily metrizable). We also define two classes of topological
spaces: relative extension (ESR) and relative neighborhood extension (NESR). These spaces are
an essential generalization of spaces considered by G. Fournier and A. Granas in [4]. The relative
extension of continuous maps is applied to the theorems on the fixed points of multivalued compact
and noncompact maps. This article is an integral part of relative retracts theory (see [1, 2, 3]).

2 Preliminaries

Throughout this paper, all spaces are assumed to be Hausdorff topological spaces and all singlevalued
mappings are continuous. A continuous map f : X → Y is called perfect, if for every y ∈ Y , the set
f−1(y) is nonempty and compact provided f is closed. Let X and Y be two spaces and assume that
for every x ∈ X a nonempty subset φ(x) of Y is given. In this case, we say that φ : X ( Y is a
multivalued mapping. Let H∗ be the C̆ech homology functor with compact carriers, coefficients in
the field of rational numbers Q from the category of Hausdorff topological spaces, continuous maps
to the category of a graded vector space and linear maps of degree zero. Thus H∗(X) = {Hq(X)}
is a graded vector space, Hq(X) being a q-dimensional C̆ech homology group with compact carriers
of X. For a continuous map f : X → Y , H∗(f) is the induced linear map f∗ = {fq}, where
fq : Hq(X)→ Hq(Y ) ([5]). A set X is acyclic if:

(i) X is nonempty,

(ii) Hq(X) = 0 for every q ≥ 1 and

(iii) H0(X) ≈ Q.

Let u : E → E be an endomorphism of an arbitrary vector space. Suppose

N(u) = {x ∈ E : un(x) = 0 for some n},

where un is the n-th iterate of u and Ẽ = E/N(u). Since u(N(u)) ⊂ N(u), we have the induced

endomorphism ũ : Ẽ → Ẽ defined by ũ([x]) = [u(x)]. We call u admissible provided dimẼ < ∞.
Let u = {uq} : E → E be an endomorphism of degree zero of a graded vector space E = {Eq}. We
call u a Leray endomorphism if

(i) all uq are admissible,

(ii) almost all Ẽq are trivial.

For such a u, we define the (generalized) Lefschetz number Λ(u) of u by putting

Λ(u) =
∑
q

(−1)qtr(ũq),

where tr(ũq) is the ordinary trace of ũq (comp. [5]). The following important property of a Leray
endomorphism is a consequence of a well-known formula tr(u ◦ v) = tr(v ◦u) for the ordinary trace.

Proposition 2.1. [5] Assume that, in the category of graded vector spaces the following diagram
commutes

E′ -u
E′′

6
u′′

E′′
Z

Z
Z

Z}
v

-E′

6
u′

u

If one of u′, u′′ is a Leray endomorphism, then so is the other; and Λ(u′) = Λ(u′′).
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An endomorphism u : E → E of a graded vector space E is called weakly nilpotent if for every
q ≥ 0 and for every x ∈ Eq , there exists an integer n such that un

q (x) = 0. For a weakly nilpotent
endomorphism u : E → E, we have N(u) = E.

Proposition 2.2. If u : E → E is a weakly nilpotent endomorphism, then Λ(u) = 0.

A perfect map p : X → Y is called Vietoris provided for every y ∈ Y the set p−1(y) is acyclic.
We recall that the composition of two Vietoris mappings is a Vietoris mapping and if p : X → Y
is a Vietoris map then p∗ : H∗(X) → H∗(Y ) is an isomorphism (see, [5]). Let φ : X ( Y be a
multivalued map. We recall that the map φ is admissible (s-admissible) (see, [5]) if there exist a
Vietoris map p : Z → X and a continuous map q : Z → Y such that for each x ∈ X

q(p−1(x)) ⊂ φ(x) (q(p−1(x)) = φ(x)) (we will write (p, q) ⊂ φ ((p, q) = φ)).

Let φ : X ( Y be a map and let A ⊂ X be a nonempty set. We denote φA : A( X a map given
by the formula φA(x) = φ(x) for each x ∈ A.

Definition 2.3. A topological vector space is called Klee admissible provided for every compact
K ⊂ E and for every open neighborhood of zero V in E there exists a continuous map πV : K → E
such that:
(2.3.1) (x− πV (x)) ∈ V for every x ∈ K and
(2.3.2) there exists a natural number n = nK such that πV (K) ⊂ En, where En is an n-dimensional
subspace of E.

It is well known that any locally convex space is Klee admissible. We recall that a multivalued map
φ : X ( Y is compact, if the set φ(X) ⊂ Y is compact.

Theorem 2.4. [5] Let E be a Klee admissible space and let U ⊂ E be an open set. Consider a
diagram:

U
p←−−−−− Z

q−−−−−→ U,

p is Vietoris and q is compact. Then q∗ ◦ p−1
∗ is a Leray endomorphism and Λ(q∗ ◦ p−1

∗ ) ̸= 0 implies
that p and q have a coincidence point, that is, there is a point z ∈ Z such that p(z) = q(z).

Theorem 2.5. [6] Let X be normal, A ⊂ X closed, and F0 : A→ E a compact map into a normed
space E. Then F0 is extendable to a compact map F : X → E.

Proposition 2.6. Let X be normal, A ⊂ X closed, and F0 : A→ U a compact map into an open
set U ⊂ E, where E is a normed space. Then F0 is extendable to a compact map F : V → U ,
where V ⊂ X is some open neighborhood of A.

Proof. Let F0 : A → U be a compact map, that is, F0(A) ⊂ U is a compact set, where A ⊂ X is
closed and U ⊂ E is an open set. There exists an open neighborhood V1 ⊂ U of F0(A) such that
V 1 ⊂ U . From Theorem 2.5 there exists a compact extension F : X → E of F0 : A → U ⊂ E.
Let V = F−1(V1). We define a map F̃ : V → U by the formula F̃ (x) = F (x) for each x ∈ V . We

observe that the map F̃ is a compact extension of F0 and the proof is complete.

Definition 2.7. (see, [4]) A spaceM is an extension (resp. neighborhood extension) space provided
for any compact pair (X,A) with A ⊂ X closed and any map f0 : A → M there is an extension
f : X → M (resp. neighborhood extension f : U → M) of f0 over X (resp. over the neighborhood
of A in X). The classes of the extension spaces and the neighborhood extension spaces will be
denoted by ES (written M ∈ ES) and NES (written M ∈ NES) respectively.
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Let X ∈ ANR and let Y ⊂ X be a compact and nonempty subset. We recall that Y is movable in
X provided every neighborhood U of Y admits a neighborhood V of Y , V ⊂ U , such that for every
neighborhood W of Y , W ⊂ V , there exists a homotopy H : V × [0, 1]→ U with

H(x, 0) = x and H(x, 1) ∈W, for any x ∈ V. (1)

Let y0 ∈ Y . We recall that Y has a trivial shape in X provided every neighborhood U of Y admits
a neighborhood V of Y , V ⊂ U , such that there exists a homotopy H : V × [0, 1]→ U with

H(x, 0) = x and H(x, 1) = y0, for any x ∈ V. (2)

Let Y be a compact and metrizable space. We say that Y is movable provided there exists a space
X ∈ ANR and an embedding h : Y → X such that h(Y ) is movable in X.

Remark 2.8. We recall that in the metrizable spaces the property of movable is an absolute
property, that is, if a compact set Y is movable in some ANR X and h : Y → X ′ is an embedding
into an ANR X ′, then h(Y ) is movable in X ′ (see, [7]).

Remark 2.9. [7] The following are types of movable spaces: AR, ANR, FAR and FANR.

3 The Families of Sets

In this section, we will give the necessary notions through definitions and lemmas.

Definition 3.1. (Trivial shape) Let T be a Tychonoff cube, X ⊂ T be a compact space and
let x0 ∈ X be an arbitrary point. We will say that X has a trivial shape in T provided every
neighborhood U ⊂ T of X admits a neighborhood V of X, V ⊂ U , such that there exists a
homotopy H : V × [0, 1]→ U with

H(x, 0) = x and H(x, 1) = x0, for any x ∈ V, (see (2)).

A compact space X has a trivial shape if there exists a Tychonoff cube T and an embedding
h : X → T such that h(X) has a trivial shape in T.

Lemma 3.2. Let S be a nonempty set and let X =
∏

s∈S Xs. Assume that for each s ∈ S there
exists a Tychonoff cube Ts such that Xs ⊂ Ts. The space X has a trivial shape in T =

∏
s∈S Ts if

and only if for each s ∈ S a space Xs has a trivial shape in Ts.

Proof. Assume that X has a trivial shape in T. Let λ ∈ X, λ = {λs} and let a ∈ S. We show that
Xa has a trivial shape in Ta. Let Ua ⊂ Ta be a compact neighborhood of Xa. The set U =

∏
s∈S Us,

where Us = Ts for each s ̸= a is a compact neighborhood of X in T =
∏

s∈S Ts. There exists a
compact neighborhood V =

∏
s∈S Vs ⊂ U of X, Vs = Ts for each s /∈ {s1, s2, .., sn, a} such that

there exists a homotopy Hλ : V × [0, 1]→ U with

Hλ(x, 0) = x and Hλ(x, 1) = λ, for any x ∈ V.

Suppose that

Va × [0, 1]
h−−−−−→ V × [0, 1]

Hλ−−−−−→ U
π−−−−−→ Ua,

where h is a homeomorphism given by the formula h(va, t) = ({ys}, t), ya = va, ys = λs for s ̸= a
and π is a projection, then we define a homotopy Ha : Va × [0, 1]→ Ua by the formula:

Ha = π ◦Hλ ◦ h.

Assume now that for each s ∈ S a space Xs has a trivial shape in Ts. Let λ ∈ X, λ = {λs} be
an arbitrary point and let U =

∏
s∈S Us ⊂ T be a compact neighborhood of X in T such that
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for each s /∈ {s1, s2, ..., sn}, Us = Ts. It follows that, for each k = 1, ..., n there exists a compact
neighborhood Vsk ⊂ Usk of Xsk and a homotopy Hsk : Vsk × [0, 1]→ Usk with

Hsk (x, 0) = x and Hsk(x, 1) = λsk , for any x ∈ Vsk .

Let V =
∏

s∈S Vs, Vs = Ts for any s /∈ {s1, s2, ..., sn}. We define a homotopy Hλ : V × [0, 1] → U
by the formula

Hλ({vs}, t) = {Hs(vs, t)}, for any v = {vs} ∈ V,
where

Hs : Vs × [0, 1] = Ts × [0, 1]→ Ts = Us

for each s /∈ {s1, s2, ..., sn} is a homotopy such that

Hs(vs, 0) = vs and Hs(vs, 1) = λs

for any vs ∈ Vs (for each s ∈ S the space Ts is contractible).

Lemma 3.3. Let S be a nonempty set and let, for each s ∈ S, Xs be a compact space. Let
X =

∏
s∈S Xs. The space X is acyclic if and only if for each s ∈ S, the space Xs is acyclic.

Proof. Assume that X is acyclic. Let x ∈ X, x = {xs} be an arbitrary point and s0 ∈ S. We want
to show that the space Xs0 is acyclic. Consider the map

Xs0
h−−−−−→ X

πs0−−−−−→ Xs0 ,

where h(zs0) = {ys}, ys = xs for each s ̸= s0, ys0 = zs0 and πs0 is a projection. We observe that

πs0 ◦ h = IdXs0
.

Hence, the map
h∗ : H∗(Xs0)→ H∗(X)

is a monomorphism, so Xs0 is an acyclic space. Assume now that, for each s ∈ S the space Xs

is acyclic. From the mathematical literature (see, [5]) we know that if the spaces X1, ..., Xn are
acyclic, then the space X1 × ...×Xn is acyclic. Let Σ = {ξ ⊂ S : ξ is a finite set}, then (Σ,≤) is
a directed set, where ≤ is an inclusion. Given that

X = lim
←
{Yξ, π

ξ
ζ ,Σ},

where Yξ = Xs1 × Xs2 × ... × Xsn , ξ = {s1, s2, ..., sn} ⊂ S and for each ζ ≤ ξ, πξ
ζ : Yξ → Yζ is a

projection. It follows from the continuity of the C̆ech homology that the space X is acyclic.

Lemma 3.4. Let Q be a Hilbert cube. Let S be a nonempty set and let X =
∏

s∈S Xs. Assume
that, for each s ∈ S, Xs is a compact subset of Qs = Q. The space X has a trivial shape in
T =

∏
s∈S Qs if and only if for each s ∈ S a space Xs has a trivial shape in Qs.

Proposition 3.5. If X ⊂ T has a trivial shape in T, then X is acyclic.

Proof. Let
Σ = {K : K is a compact neighborhood of X in T}

a directed set from the inclusion ≤, that is, (ξ ≤ ζ)⇔ (Kζ ⊂ Kξ) for each ξ, ζ ∈ Σ and let

X = {Kζ , j
ζ
ξ , Σ}

be an inverse system, where for ξ ≤ ζ, jζξ : Kζ → Kξ is an inclusion. Then the inclusion iξ : X → Kξ

is homotopic to a constant map Cξ : X → Kξ, Cξ(x) = x0 for each x ∈ X, ξ ∈ Σ and an arbitrary
x0 ∈ X. Since Čech homology is continuous, we obtain

(lim
←
iξ)∗ = (lim

←
Cξ)∗,
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where
(lim
←
iξ)∗ : H∗(X)→ H∗(lim

←
X)

is an isomorphism, so X is acyclic.

Definition 3.6. (Cell-like) Let X be a space. A perfect map α : Z → X is cell-like if for each
compact set K ⊂ X there exist a Tychonoff cube T and an embedding h : α−1(K) → T such that
for each x ∈ K the set h(α−1(x)) has a trivial shape in T.

Let ∆ be family sets of compact and nonempty spaces such that the following conditions are satisfied:

if A is a single-element space, then A ∈ ∆. (3)

If, for each s ∈ S, As ∈ ∆ then

(∏
s∈S

As

)
∈ ∆, (4)

where S is any, nonempty set. For each A ∈ ∆ there exists a Tychonoff cube T and an embedding
h : A→ T such that

h(A) ∈ ∆. (5)

If A ∈ ∆ is a metrizable space then there exists an embedding h : A→ Q such that

h(A) ∈ ∆ (6)

where Q is a Hilbert cube. Let X be a space. We will say that a perfect map α : Z → X is a ∆ map
if for each compact set K ⊂ X there exist a Tychonoff cube T and an embedding h : α−1(K)→ T
such that for each x ∈ K the set h(α−1(x)) ∈ ∆. We observe that if α ∈ D(X), then for each
nonempty set B ⊂ X (not necessarily compact) αα−1(B) ∈ D(B), where αα−1(B) is a restriction of

α to the set α−1(B). Denote

D(X) = {α : Z → X; α is a ∆ map}. (7)

The following are examples of D type sets:

HOM(X) = {α : Z → X; α is a homeomorphism}, (8)

CELL(X) = {α : Z → X; α is a cell-like map}, (9)

V(X) = {α : Z → X; α is a Vietoris map}. (10)

We observe that
HOM(X) ⊂ CELL(X) ⊂ V(X). (11)

4 Relative Extensions of Maps

In this section we will define the notion of relative extension of maps and prove some of its properties.

Definition 4.1. ( see, Definition 2.7) We say that a space X is a relative extension (relative
neighborhood extension) (we write X ∈ ESR(D), (X ∈ NESR(D))) if for each compact set K ⊂ X
there exists a space ZK , αK : ZK → K, αK ∈ D(K) such that for each compact space Y , for each
closed set A ⊂ Y and for each continuous map f : A → ZK the map αK ◦ f has a continuous
extension F : Y → X (F : U → X), where U ⊂ Y is some open set such that A ⊂ U , that is the
following diagram:

ZK
j◦αK−−−−−→ Xxf

xF

A
i−−−−−→ T,

is commutative, where T = Y (T = U), i : A ↩→ T and j : K ↩→ X are inclusions.
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Proposition 4.2. A space X ∈ NESR(HOM)(ESR(HOM)) if and only if X ∈ NES(ES).

Proof. Let X ∈ NESR(HOM) and let f : A → X be a continuous map, where A ⊂ Y is a closed
subset of a compact space Y . We denote by K = f(A). There exists a map αK : ZK → K,
αK ∈ HOM(K) such that the conditions of Definition 4.1 are satisfied. Given that

A
f̃−−−−−→ K

α−1
K−−−−−→ ZK

αK−−−−−→ K
i−−−−−→ X,

where f̃(y) = f(y) for each y ∈ A, α−1
K is an inverse homeomorphism and i is an inclusion. There

exists an extension G : U → X of αK ◦(α−1
K ◦ f̃) = f̃ , where U ⊂ Y is some open neighborhood of A.

The proof in the opposite direction is obvious and the proof of the second part of this Proposition
is analogical.

Remark 4.3. ( see, [1]) Let X,Y be metrizable spaces. We recall that a space X is a D-retract
of Y , if there exist a metrizable space Z ⊂ Y , α : Z → X, α ∈ D(X) and r : Y → X such that
r ◦ i = α, where i : Z ↩→ Y is an inclusion. We will say that the map r is a D-retraction and a space
Z is a D-carrier of X in Y . We will write X ∈ ANRR(D) (X ∈ ARR(D)) if there exists a normed
space E, an open set V ⊂ E such that X is a D-retract of V (E).

We observe that if α : X → Y is a perfect (proper) map such that, for each y ∈ Y , the set α−1(y)
has a trivial shape then α ∈ CELL(Y ) (see (6) and Lemma 3.4).

Proposition 4.4. Let X be a metrizable space. If X ∈ ANRR(D)(ARR(D)) then X ∈ NESR(D)
(ESR(D)).

Proof. Let X be a metrizable space and let X ∈ ANRR(D). Then, there exists a normed space E,
an open set V ⊂ E such that X is a D-retract of V ; that is, there exist a space Z ⊂ V , α : Z → X,
α ∈ D(X) and r : V → X such that r ◦ i = α, where i : Z ↩→ V is an inclusion. Let K ⊂ X be a
compact set, ZK = α−1(K) and αK : ZK → K, αK(z) = α(z) for each z ∈ ZK , where αK ∈ D(K).
Let us take a compact space Y , a closed set A ⊂ Y and a continuous map f : A → ZK . Then, we
have

A
f−−−−−→ ZK

j−−−−−→ Z
i−−−−−→ V

r−−−−−→ X,

where j is an inclusion. There exists an extension G : U → V of i ◦ j ◦ f (see, Proposition 2.6),
where U ⊂ Y is some open neighborhood of A. We define an extension F : U → X of αK ◦ f by
the formula

F = r ◦G.
The proof of the second part of this Proposition is analogical.

Proposition 4.5. A space (X1×X2) ∈ NESR(D)(ESR(D)) if and only ifX1 ∈ NESR(D)(ESR(D))
and X2 ∈ NESR(D)(ESR(D)).

Proof. Let (X1 × X2) ∈ NESR(D) and let K ⊂ X1(K ⊂ X2) be a compact set. Then a set
K × {x2} ⊂ X1 ×X2 ({x1} ×K ⊂ X1 ×X2) is compact, where (x1, x2) ∈ X1 ×X2 is an arbitrary
point. From the assumption there exists a map αK : ZK → K × {x2} (αK : ZK → {x1} × K),
αK ∈ D(K × {x2}) (αK ∈ D({x1} × K)) such that the conditions of Definition 4.1 are satisfied.
Let T be a compact space and let f : A → ZK be a continuous map, where A ⊂ T is a closed set.
There exists an extension G : U → X1×X2 of αK ◦ f , where U ⊂ T is an open neighborhood of A.
We define a map F : U → X1 (F : U → X2) by the formula

F = π1 ◦G (F = π2 ◦G),

where πi : X1 ×X2 → Xi are projections, i = 1, 2. Now, let X1 ∈ NESR(D) and X2 ∈ NESR(D)
and let K ⊂ X1 × X2 be a compact set. We denote by Ki = πi(K), where πi : X1 × X2 → Xi

18
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are projections, i = 1, 2. There exists a map αKi : ZKi → Ki, αKi ∈ D(Ki), i = 1, 2 such that
the conditions of Definition 4.1 are satisfied. It’s obvious that K ⊂ K1 ×K2. Let α = αK1 × αK2 ,
ZK = α−1(K) and αK : ZK → K, αK(z) = α(z) for each z ∈ ZK . Let T be a compact space and
let f : A→ ZK be a continuous map, where A ⊂ T is a closed set. For i = 1, 2 we have

A
f−−−−−→ ZK

j−−−−−→ ZK1 × ZK2

π′
i−−−−−→ ZKi

αKi−−−−−→ Ki
ji−−−−−→ Xi,

where j, ji are inclusions and π
′
i : ZK1×ZK2 → ZKi are projections, i = 1, 2. There exist extensions

Gi : Vi → Xi of αKi ◦ (π′i ◦ j ◦ f), where Vi ⊂ T some open neighborhoods of A, i = 1, 2. Let
U = V1 ∩ V2. We define an extension F : U → X1 ×X2 of αK ◦ f by the formula

F (t) = (G1(t), G2(t)) for each t ∈ U.

The proof of the second part of this Proposition is analogical.

Proposition 4.6. Let S be a nonempty set and let X =
∏

s∈S Xs. If X ∈ NESR(D) then
Xs ∈ NESR(D) for each s ∈ S.

Proof. Assume that X ∈ NESR(D). Let s0 ∈ S, K ⊂ Xs0 be a compact set and let {xs} ∈ X be
an arbitrary point. Denote

P =
∏
s∈S

Ys,

where for each s ̸= s0, Ys = {xs} and Ys0 = K. There exists a map αP ∈ D(K), αP : ZP → P
such that the conditions of Definition 4.1 are satisfied. Let ZK = ZP and let αK = h ◦ αP , where
h : P → K is a homeomorphism (restriction of a projection πs0 : X → Xs0). Let f : A → ZK

be a continuous map, where A is a closed subset of a compact space Y . There exists an extension
G : U → X of αK ◦ f , where U ⊂ Y is an open neighborhood of A. We define an extension
F : U → Xs0 of αK ◦ f by the formula F = πs0 ◦G and the proof is complete.

Proposition 4.7. Let S be a nonempty set and let X =
∏

s∈S Xs. A space X ∈ ESR(D) if and
only if Xs ∈ ESR(D) for each s ∈ S.

Proof. Assume that X ∈ ESR(D). It follows from Proposition 4.6 that Xs ∈ ESR(D) for each
s ∈ S. Let for each s ∈ S the space Xs ∈ ESR(D) and let K ⊂ X be a compact set. We denote
by Ks = πs(K), where πs : X → Xs is a projection for each s ∈ S. For each s ∈ S, we take a
map αKs ∈ D(Ks), αKs : ZKs → Ks such that the conditions of Definition 4.1 are satisfied. It is
obvious that K ⊂

∏
s∈S Ks. Let α =

∏
s∈S αKs :

∏
s∈S ZKs →

∏
s∈S Ks, ZK = α−1(K) and let

αK : ZK → K be a restriction of α. It is clear that αK ∈ D(K). Let f : A→ ZK be a map, where
A is a closed subset of a compact space Y and let π1

s : ZK → ZKs be a projection for each s ∈ S.
Then, we have

A
f−−−−−→ ZK

π1
s−−−−−→ ZKs

αKs−−−−−→ Ks
is−−−−−→ Xs,

where is is an inclusion, for each s ∈ S. It follows that for each s ∈ S, there exists an extension
Fs : Y → Xs of αKs ◦ (π1

s ◦ f). We define an extension F : Y → X of αK ◦ f by the formula:

F (y) = {Fs(y)} for each y ∈ Y

and the proof is complete.

Example 4.8. Let X be a metrizable and non-movable space, Q be a Hilbert cube and p : Q→ X
be a cell-like map (see, [8]). Let S be a nonempty set (card(S) > ℵ0) and let Y =

∏
s∈S Ys,

where Ys = X for each s ∈ S. We define a cell-like map α : T → Y by the formula α = {ps}s∈S ,
where T =

∏
s∈S Qs is a Tychonoff cube and for each s ∈ S, Qs = Q and ps = p. It is clear
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that Y ∈ ESR(CELL) (in particular, Y ∈ NESR(CELL)) is a non-metrizable space. We show
that Y /∈ NES. Assume that Y ∈ NES. Then, from Proposition 4.6, X ∈ NES. Hence X is a
neighborhood retract of Q, so X ∈ ANR, but it is a contradiction, since X is a non-movable space
(see Remark 2.9).

5 The Abstract Morphism

The symbol D(X,Y ) will denote the set of all mappings of the form

X
p←−−−−− Z

q−−−−−→ Y,

where p : Z → X denotes a Vietoris map and q : Z → Y denotes a continuous map. Each such
diagram will be denoted by (p, q). Let (p1, q1) ∈ D(X,Y ) and (p2, q2) ∈ D(Y, T ). The composition
of diagrams (see, [5])

X
p1←−−−−− Z1

q1−−−−−→ Y
p2←−−−−− Z2

q2−−−−−→ T ,

is called a diagram (p, q) ∈ D(X,T )

X
p←−−−−− Z1 △q1p2 Z2

q−−−−−→ T,

where Z1 △q1p2 Z2 = {(z1, z2) ∈ Z1 × Z2 : q1(z1) = p2(z2)},
p = p1 ◦ π1, q = q2 ◦ π2,

Z1
π1←−−−−− Z1 △q1p2 Z2

π2−−−−−→ Z2,

π1(z1, z2) = z1 (Vietoris map), π2(z1, z2) = z2 for each (z1, z2) ∈ Z.
It shall be written

(p, q) = (p2, q2) ◦ (p1, q1).
From ([5], p. 201, 202) it also results that the composition of the diagrams satisfies the condition:

for each x ∈ X q(p−1(x)) = q2(p
−1
2 (q1(p

−1
1 (x)))). (12)

Let (p1, q1), (p2, q2) ∈ D(X,Y ). Assume that, in the set D(X,Y ) we have an equivalency relation
(it is denoted as ∼a) such that the following conditions are satisfied (see [9, 10, 11]):

((p1, q1) ∼a (p2, q2))⇒ (for each x ∈ X q1(p
−1
1 (x)) = q2(p

−1
2 (x))), (13)

((p1, q1) ∼a (p2, q2))⇒ (q1∗ ◦ p−1
1∗ = q2∗ ◦ p−1

2∗ ), (14)

Let (p3, q3), (p4, q4) ∈ D(Y, T ).

((p1, q1) ∼a (p2, q2) and (p3, q3) ∼a (p4, q4))⇒ (((p3, q3) ◦ (p1, q1)) ∼a ((p4, q4) ◦ (p2, q2))). (15)

The set Ma(X,Y ) = D(X,Y )/∼a will be called a set of abstract morphisms (a-morphism). Let
(p, q) ∈ D(X,Y ). For any φa ∈ Ma(X,Y ) the set φ(x) = q(p−1(x)) where φa = [(p, q)]a is called
an image of the point x in the a-morphism φa. We denote by φ : X →a Y a multivalued map
determined by φa ∈ Ma(X,Y ). We observe from (12) and (15) that if φ : X →a Y is determined
by φa = [(p1, q1)]a and ψ : Y →a T is determined by ψa = [(p2, q2)]a then ψ ◦ φ : X →a T is
determined by

(ψ ◦ φ)a = [((p2, q2) ◦ (p1, q1))]a.
We recall that a multivalued map φ : X ( Y is acyclic if for each x ∈ X the set φ(x) is compact
and acyclic. An acyclic map φ : X →a Y is determined by φa = [(pφ, qφ)]a, where

X
pφ←−−−−− Γφ

qφ−−−−−→ Y

are maps given by formulas: pφ(x, y) = x, qφ(x, y) = y for each (x, y) ∈ Γφ and Γφ is a graph of φ.
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Remark 5.1. Let φ : X →a X be a map. We observe that a map φ has a fixed point i.e., there
exists a point x ∈ X such that x ∈ φ(x) if and only if for some (p, q) ∈ φa, p and q have a coincidence
point.

Let TOP denote categories in which Hausdorff topological spaces are objects and continuous
mappings are category mappings. Let TOPa denote categories in which Hausdorff topological
spaces are objects and multivalued maps determined by abstract morphisms are category mappings.
Let VECTG denote categories in which linear graded vector spaces are objects and linear mappings
of degree zero are category mappings.

Theorem 5.2. (see [9]) The mapping H̃∗ : TOPa → VECTG given by the formula

H̃∗(φ) ≡ φ∗ = q∗ ◦ p−1
∗ ,

where φ is a multivalued map determined by φa = [(p, q)]a is a covariant functor and the extension
of the functor of the C̆ech homology H∗ : TOP→ VECTG.

Let φ : X →a X be a map determined by φa = [(p, q)]a, where (p, q) ∈ D(X,X). Assume that
φ∗ = q∗ ◦ p−1

∗ is a Leray endomorphism (see (14)). Then, we define a Lefschetz number of φ∗ by
the formula

Λ(φ∗) = Λ(q∗ ◦ p−1
∗ ).

We recall that φ : X →a X is a Lefschetz map if φ∗ is a Leray endomorphism and Λ(φ∗) ̸= 0
implies that the map φ has a fixed point.

Remark 5.3. A map φ : X ( Y is admissible if and only if there exists a map ∆ : X →a Y such
that ∆ ⊂ φ, that is, for each x ∈ X, ∆(x) ⊂ φ(x).

6 The Fixed Points of Compact Maps

In this section we will show that the spaces of NESR(V) type has the fixed point property.

Theorem 6.1. Let X ∈ NESR(V) and let φ : X →a X be a compact map. Then φ is a Lefschetz
map.

Proof. For K = φ(X) there exists a map αK : ZK → K, αK ∈ V(K) such that the conditions of
Definition 4.1 are satisfied. Let h : ZK → T be an embedding and let S = h(ZK) ⊂ T, where T is
some Tychonoff cube. We have the following diagrams:

S
h−1

−−−−−→ ZK
αK−−−−−→ K

i1−−−−−→ X,

X
φ̃−−−−−→ K

←−αK−−−−−→ ZK
h−−−−−→ S,

where i1 is an inclusion, h−1 is an inverse homeomorphism, φ̃(x) = φ(x) for each x ∈ X and
←−αK(x) = α−1

K (x) for each x ∈ K. From the assumption there exists an extension F : U → X of
αK ◦ h−1, where U ⊂ T is some open set such that S ⊂ U . We get the following commutative
diagram:

X -ψ
U

6
ψ ◦ F

U ,
Z

Z
Z

Z}
F

-X

6
φ

ψ
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where ψ = i2 ◦h ◦←−αK ◦ φ̃ and i2 : S ↩→ U is an inclusion . There exists a locally convex space L(T)
such that T is a retract of L(T) (see, [4]). Let r : L(T)→ T be a retraction and let r̃ : r−1(U)→ U
be a map given by r̃(x) = r(x) for each x ∈ r−1(U). We have the following commutative diagram:

U -j
r−1(U)

6
j ◦ η

r−1(U),
Z

Z
Z

Z}
η

-U

6
ψ ◦ F

j

where j is an inclusion and η = ψ◦F ◦ r̃. From Proposition 2.1 and Theorem 2.4 a Lefschetz number
Λ(φ∗) is well defined and Λ(φ∗) = Λ((j ◦ η)∗). Assume now, that Λ(φ∗) ̸= 0 then from Theorem
2.4 the map j ◦ η has a fixed point (see, Remark 5.1). Hence, the map ψ ◦ F has a fixed point. Let
x ∈ U be a fixed point of ψ ◦ F . It follows that

F (x) ∈ F (h(←−αK(φ̃(F (x))))) = φ̃(F (x)) = φ(F (x)).

Thus, φ is a Lefschetz map.

7 The Fixed Points of Noncompact Maps

Let φn ≡ φ ◦ φ ◦ ... ◦ φ, (nth iterate of φ), where n ∈ N.

Definition 7.1. A map φ : X →a X is called a compact absorbing contraction (written φ ∈
CAC(X)) provided there is an open set U ⊂ X such that:

(7.1.1) φ(U) ⊂ U and the map φU : U →a U , φU (x) = φ(x) for every x ∈ X is compact,
(7.1.2) for every x ∈ X there exists n = nx such that φn(x) ⊂ U .

Lemma 7.2. (see [5]) Let φ ∈ CAC(X) and U be an open subset X as in Definition 7.1. If K is
a compact subset of X, then there exists n ∈ N such that φn(K) ⊂ U .

Let φ : X ( Y be a map and let A ⊂ X and B ⊂ Y be nonempty sets. Assume that φ(A) ⊂ B.
We denote by φ̂ : (X,A) ( (Y,B) a map of pairs, that is, φ̂(x) = φ(x) for each x ∈ X.

Lemma 7.3. (see [5]) Let φ̂ : (X,A) →a (X,A) be a map of pairs. If any two of endomorphisms
φ̂∗ : H(X,A) → H(X,A), φ∗ : H(X) → H(X), φA∗ : H(A) → H(A) are Leray endomorphisms,
then so is the third and

Λ(φ̂∗) = Λ(φ∗)− Λ(φA∗).

Lemma 7.4. Let X ∈ NESR(D). If U ⊂ X is an open set then U ∈ NESR(D).

Proof. Let U ⊂ X be an open set and let K ⊂ U be a compact set. There exists αK : ZK → K,
αK ∈ D(K) such that the conditions of Definition 4.1 are satisfied. Let Y be a compact space and
let f : A → ZK be a continuous map, where A ⊂ Y is a closed set. From the assumption there
exists an extension F1 : V1 → X of αK ◦ f , where V1 ⊂ Y is some open neighborhood of A. The set
V = F−1

1 (U) ⊂ Y is an open neighborhood of A. We define an extension F : V → U of αK ◦ f by
the formula

F (x) = F1(x) for each x ∈ V.

Let φ : X →a X be a map. Denote

Fix(φ) = {x ∈ X : x ∈ φ(x)}.
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Theorem 7.5. Let X be a space and let φ ∈ CAC(X). Assume further that there exists a space
A ⊂ X such that A ∈ NESR(V) and φ(U) ⊂ A, where U is chosen according to Definition 7.1,
then φ is a Lefschetz map.

Proof. Let ψ : U →a U ∩ A be a map given by ψ(x) = φ(x) for all x ∈ U . By the assumption, a
map ψ is well-defined. We observe that (U ∩A) ∈ NESR(V) (see, Lemma 7.4). A homomorphism
φ̂∗ : H(X,U) → H(X,U) is weakly nilpotent (see, [12]). Hence, from Proposition 2.2 we get
Λ(φ̂∗) = 0. We have a following commutative diagram:

H(U ∩A) -i∗
H(U)

6
φU∗

H(U),
Z

Z
Z

Z}
ψ∗

-H(U ∩A)

6
φA∩U∗

i∗

where i : U ∩ A ↩→ U is an inclusion. From the above diagram and Proposition 2.1, it results that
φU∗ is a Leray endomorphism and Λ(φU∗) = Λ(φA∩U∗) (see, Theorem 6.1). Hence, from Lemma
7.3, we get that φ∗ is a Leray endomorphism and Λ(φ∗) = Λ(φU∗). Assume that Λ(φ∗) ̸= 0. Then
Λ(φA∩U∗) ̸= 0 and φA∩U has a fixed point (see, Theorem 6.1). It is clear that Fix(φA∩U ) ⊂ Fix(φ),
so φ is a Lefschetz map.

8 Conclusion

In section 3 the notions of a trivial shape in topological spaces are given. In section 4 the notions
of ES and NES are generalized. Example 4.8 shows that the class of spaces of NESR(CELL)
(ESR(CELL)) type is essentially wider than the class of spaces of NES (ES) type. We prove that
in the class of metrizable spaces ANRR(D) ⊂ NESR(D) (ARR(D) ⊂ ESR(D)). In sections 6 and
7, we prove that the spaces of NESR(V) type (in particular NESR(CELL)) have the fixed point
property. It is worth mentioning that this article is strongly related to [2, 1, 3].
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[12] Ślosarski M. Fixed points of multivalued mappings in Hausdorff topological spaces. Nonlinear
Analysis Forum. 2008;13(1):39-48.

——————————————————————————————————————————————–
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