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Abstract 
 

In this paper, the complex dynamic behavior of a mixed duopoly game model is studied. Based on the 
principle of relative profit maximization and bounded rational expectation, the corresponding discrete 
dynamic systems are constructed in the case of nonlinear cost function. In theory, the conditions for the 
local stability of Nash equilibrium are given. In terms of numerical experiments, bifurcation diagrams are 
used to depict the effects of product differences, adjustment speed, and other parameters on the stability 
of Nash equilibrium. 
 

 

Keywords: Mixed duopoly; relative profit maximization; bounded rational; nash equilibrium point; 
stability. 

 

1 Introduction 
 

Oligopoly market refers to a market with a limited number of enterprises at the same time, and different 
market players compete incompletely in the same market. In the market economy, the product price occupies 
a larger weight in the process of consumer choice, so the law of price competition is essential for enterprise 
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market analysis. At the same time, the number of products has a profound impact on the market law, and it is 
also an important part of the market price competition. Therefore, it is particularly important to study the law 
of oligopoly game between product price and product quantity. 

 
In recent years, many literatures in the world made a lot of analysis on the oligopoly game. Based on 
Cournot or Bertrand game in oligopolistic market [1-3], have studied a lot and reported a large amount of 
works. With the spillover effect, Zha et al. [4] studied the Nash equilibrium stability of Bertrand duopoly 
game. In [5], the dynamic characteristics of closed-loop Bertrand game have been investigated in supply 
chain. In [6], they analyze the strategic authorization model of Cournot competition under the condition of 
equal elastic demand. Reference [7] analyzes the heterogeneous game with linear demand function and 
parabolic total cost function. In [8], they consider a mixed Cournot Bertrand duopoly game, in which there 
are different types of competition. Chen et al. [9] introduced the Bertrand game with linear demand to 
simulate the competition in China's telecom market. Reference [10] studied a linear continuous Bertrand 
duopoly game model with time delay. In recent years, studies show that under conditions such as [11], the 
oligarchic market may have chaotic or cyclic behavior. In these studies, the main focus is to study the 
complex dynamic characteristics of the game. For example, some complex dynamics of duopoly game are 
studied in [12]. Askar and Al-khedhairi [12] used the nonlinear difference equation to establish a dynamic 
Cournot three-oligopoly game model, which consisted of three homogeneous bounded rational players. 
Andaluz et al. [13] have considered a Cournot oligopoly model which consists of three competitive 
companies that offer homogeneous goods. In [14], the dynamics of an oligopoly model considering various 
amendments and more firms are studied with various efforts. Reference [15] includes many in-depth studies 
on Cournot duopoly games, which have provided important results on the complex dynamics of such games. 
Using the technical innovation of naive expectations and bounded rationality, the complex dynamics of a 
Bertrand duopoly game in [16] have been studied. 

 
The above literatures assume that the two competing firms adopt the same competitive strategies, such as 
output competition and price competition. However, the Cournot–Bertrand mixed competition, in which one 
firm adopts the price strategy and the other firm adopts the output strategy, widely exists in the actual 
industry. It is an intermediate structure between the complete output competition and the price competition. 
As stated by Tremblay and Tremblay [17], a growing body of work demonstrates that the Cournot–Bertrand 
outcome can be a subgameperfect Nash equilibrium in the presence of market asymmetries. Observations of 
real-world markets consistent with Cournot–Bertrand behavior bolster justification for the model and have 
stimulated an impressive and evolving literature on advances and applications. There are few works on 
discussing such types of games in literature, see [17] and the references therein for more details. Among 
these works, Tremblay et al. [18] have investigated the conditions of the stability for Nash equilibrium in the 
static case. Naimzada et al. [19]have adopted the best response mechanism with the adaptive adjustment 
approach to model the game and to study the stability of its equilibrium points. In the above mentioned 
works, the authors have used different kinds of adjustment mechanisms to model the suggested games, in 
which the bounded rationality seems the most popular one. Information about this mechanism and its 
analytical form can be founded in literature [20–21]. Recently, Askar [22] invested the complex dynamics of 
Cournot-Bertrand game with asymmetric market information, in which players adopt the bounded rationality 
approach and one player has some asymmetric information about the production of his opponent. This work 
gives a rich local and global analysis of the game’s dynamics that include multiple stable attractors and 
analyzing the basins of attraction for some attracting sets. 

 
Inspired by the above studies, we consider the Complex dynamics in a mixed duopoly game based on 
relative profit maximization. In the case of nonlinear cost function, we construct the corresponding discrete 
dynamic system and study the stability of Nash equilibrium to provide theoretical support for competitive 
strategy in dynamic market competition. 
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The rest of this paper is arranged as follows: Section 2 gives the basic structure of the model; Section 3 
studies the dynamic properties of the equilibrium point of the system under the condition of nonlinear cost 
and makes the numerical analysis; Section 4 is the summary of the whole paper. 
 

2 The Model 
 
We consider a differentiated product market with an inverse demand function. It is assumed that the market 
promotes differentiated products to give consumers certain preferences and their main interests take 

advantage of differentiated products. The first enterprise produces quantity 1q  at price 1p ，and the second 

enterprise produces quantity 2q
 at price 2p

. Here, the competitive profile is 
1 2( , )p p p , where each firm 

wants to maximize profits based on the following:  

( , ) ( )
i

i i i i i i i
p

Max p p q p C q                                                      （1） 

 

where ip  refers to the price of another enterprise different from enterprise i , and ( )i iC q  is the cost 

function. Using the consumer preferences introduced by Singh and Vives, the following utility function is 
given: 

2 2
1 2 1 2 1 2 1 2 1 2

1
( , ) ( ) ( 2 ); , 0

2
U q q a q q q q bq q q q                                                             （2） 

Simple calculations show that this function is strictly concave. Using the constraint conditions 
2

1

1i i
i

p q


  

and , 1, 2i

i

U
q i

p


 


, the price function is obtained as follows: 

 

 

1 1 2

2 2 1

p a q bq

p a q bq

  


                     （3） 
 

Parameter a  is a positive constant on which the total output of both firms depends and 1 2

2

1

a
q q

b
 


, 

where parameter b  measures the degree of horizontal differentiation. If 0b  , then the market is 

controlled by two monopolies; when b  approaches 1, the difference between the two firms becomes smaller. 

Assume that this parameter is negative, implying complementarity between enterprises. 
 

1 2,p q  is expressed as a function of 1 2,q p , and the competitive model of 1 2,q p  is studied as follows: 
 

2
1 1 2

2 2 1

(1 ) (1 )p a b b q bp

q a p bq

     


  
                                                                                           （4） 

 

3 Complex Dynamic Analysis under Nonlinear Cost 
 

In the game of this work, we consider a nonlinear cost function: 
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( ) , 1, 2,i i i i i i jC q c q d q q i j i j   ，                             （5） 

 
Net profit is expressed as follows: 
 

2
1 1 2 1 1 1 1 2 1 1 1 1 1 2 1

2 1 2 2 2 2 2 2 1 2 2 1 2 1 2 1

( , ) (1 ) (1 ) ( )

( , ) ( ) ( ) ( )

q p p q C a b b q bp q c q d q a p bq

q p p q C p a p bq c a p bq d q a p bq





            

          

          

（6） 

 
We assume that the firms maximize the relative profit, which is denoted by 

 

1 1 2 1 1 2 2 1 2

2 1 2 2 1 2 1 1 2

( , ) ( , ) ( , )

( , ) ( , ) ( , )

q p q p q p

q p q p q p

 

 

  

  
                                          （7） 

 
Substituting (6) into (7), after some modifications, we get  
 

2 2
1 1 2 1 2 1 2 1 2

2 2
2 1 2 1 2 1 2 1 2

( , )

( , )

q p Gq Hp Eq p Fq p

q p Gq Hp Eq p Fq p

     

      
                                       （8） 

 
where, 

2
1 2( 1) ( )E b b d d    ， 1 22F b d d   ， 1 2 2 1(1 ) ( ) ( )G a b c bc d d a      ，

2H a c  .  

 

According to the relative profit maximization conditions 1 2

1 2

0, 0
q p

 
 

 
，Substituting Equation (8) 

into them, we can get: 

 

1
1 2

1

2
1 2

2

2 0

2 0

G Eq Fp
q

Fq p H
p


   




    



                                         （9）

 

 
To construct and study the dynamic characteristics of this game, we assume that both firms are behaving 
rationally. Rational behavior implies that firms adopt short-sighted adjustment mechanisms that require firms 
to know information about whether their relative profits are increasing or decreasing. Using this mechanism, 
we build a dynamic system to describe the game process as follows: 
 

1
1 1 1 1

1

2
2 2 2 2

2

( +1)= ( )

( +1)=p ( )

q t q t q
q

p t t p
p















                                              （10） 
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where, 1 2,   are the adjustment speed parameters. 

 

Now, by applying steady-state conditions 1 1( 1) ( )q t q t 
 and 2 2( 1) ( )p t p t 

 to each time step t , it is 
easy to obtain that the above system (10) has the following four equilibrium points: 

 

1 2 3 4 1 2(0,0), ( ,0), (0, ), ( , )
2 2

G H
S S S S q p

E
      

 
where, 
 

 

2 2 1 1
1 2

1 2

2
2 1 1 2 2 1 2 1

2 2
1 2

( )( ) 2( )

4 ( )

( ) ( ) ( ) ( ) 2( ) 2 ( )

4 ( )

a c d d a c
q

d d

a d d a c b a c d d a c b a c
p

d d

   


 

         


 

             （11） 

 
In what follows, we assume the following conditions hold  
 

1 2

2
1

1 2

2

1 2

( )

2( )1
2 min{ , }

,

a c b a c

a cb
b d d

b a c

a c a c

  


   



 

① 

② 

③ 

 

 
It is easy to see that these constrains lead to  
 

1 2
1 2

2 2
1 2

0, 0, 0

2
0

4 ( )

2
0

4 ( )

G E H

HF G
q

d d

FG H
p

d d

  


 

 


 

 

 

 

The above four equilibrium points depend on parameters 1 2 1 2, , , , ,a b c c d d , while the other parameters 

1 2,   also affect their stability. The stability region of the equilibrium point under this model is determined 

by proving the following propositions. 
 
Proposition 3.1: Equilibrium point e  is locally stable if: 
 

1 2 1 2 1 2

1
0<( ) ( ) 2

2
AB A B AB                                    （12） 

where, 

1 24A Eq F p G    ， 1 24B Fq p H   ，
2

1 2B q p   
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Proof: To study the stability of the equilibrium point, we continue to consider the aforementioned stability 
conditions, namely, 
 

1 0

1 0

1 0

T D

T D

D

  

  

  

                                                        （13） 

 
The Jacobian matrix of system (10) at the equilibrium point is 

1 2 1 1 1

2 2 1 2 2

1 (4 )

1 ( 4 )

Eq F p G Fq
J

F p Fq p H

 

 

   
  

      
                       （14） 

 
the trace and determinant of the matrix become 
 

1 2

1 2 1 2

2

(1 )(1 )

T A B

D A B

 

   

  

   
                                 （15） 

 
Therefore, the above stability conditions can be transformed into 
 

1 2

1 2 1 2

1 2 1 2

1 0 ( + ) 0

1 0 ( + ) 2 2 4 0

1 0 ( + ) 0

T D AB

T D AB A B

D A B AB

  

    

    

    

       

     

                         （16） 

 
If all three conditions are not met, the equilibrium point will become unstable. Therefore, if any of these 
conditions is violated, the equilibrium point will lose its stability due to doubling bifurcation or Neimark-
Sacker bifurcation. Through simple calculations, these conditions can be transformed into: 
 

1 2 1 2 1 2

1
0<( + ) ( ) 2

2
AB A B AB                              （17） 

 
To sum up, the proposition is proved. 
 
As mentioned above, the three conditions of (13) define a region in the adjustment velocity plane 1 2,   , 

whose shape is the blue area as shown in Fig. 1. The second inequality is a hyperbola. Violation of this 
inequality will cause the equilibrium to lose stability due to the period doubling bifurcation. It can be 
observed from the information in Fig. 1 that the local stability of the equilibrium point can be guaranteed in 

the blue region of the 1 2,  -plane. Of course, this stable region is also affected by parameters a  and b : 

when b  is close to 1 and a  is close to 11, the blue region shrinks. When parameters 1 2,   are taken from 

this blue region, the equilibrium point will lose stability due to the period doubling bifurcation. 
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Fig. 1. Equilibrium stability region (The parameter values are 1 20.8, 0.2, 0.11, 0.12a b c c    ） 

 

By fixing parameters , the bifurcation diagram of 

 with parameter  is obtained, as shown in Fig. 2a, indicating that the occurrence of period-doubling 

bifurcation leads to the instability of the equilibrium point of the system. When , the equilibrium 

point is roughly in a stable state,and when 1b  , the equilibrium point gradually loses its stability and 
enters the chaotic region.  
 

Through fixing parameters , the bifurcation diagram 

of  with parameter  is obtained, as shown in Fig. 2b, when , the equilibrium point is 

roughly in a stable state. When , the equilibrium point gradually loses its stability and enters the 

chaotic region. 
 

By fixing parameters 2 1 2 1 210, 1, 2, 1.5, 3, 0.1, 0.1a b c d d         , the bifurcation diagram of 1q
 with 

parameter 1c
 is obtained as shown in Fig. 2c. When 1 (0,35)c 

, the equilibrium point is roughly in a stable 

state, and as the parameter value gradually increases, when 1 35c  , the period doubling bifurcation begins 
to appear, and then the system behavior gradually becomes chaotic. 
 

By fixing parameters , the bifurcation diagram of  with 

parameter  is obtained, as shown in Fig. 2d. When , the equilibrium point is roughly in a 

1 2 1 2 1 21, 2, 2, 1, 3, 0.1, 0.15b c c d d        

1 2,q p a
(0,11)a

1 2 1 2 1 28, 2, 2, 1, 0.5, 0.1, 0.1a c c d d        

1 2,q p b (0,1)b

1b 

2 1 2 1 210, 1, 2, 2, 4, 0.1, 0.1a b c d d         2p

2c
2 (0, 9)c 
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stable state, but with the gradual increase of the parameter value, the period doubling bifurcation begins 
eventually leading to a chaotic construction. 
 

  

 
Fig. 2a. 

1 2,q p  image changing with parameters 

1 2,q p  

 
Fig. 2b. 

1 2,q p  image changing with parameters 

1 2,q p  

 

  

 
Fig. 2c. 1q  image changing with parameter 1c  

 
Fig. 2d. 2p  image changing with parameter 2c  

 

By fixing parameters 
1 2 2 1 210, 1, 2, 2, 1, 0.1, 0.1a b c c d         , the bifurcation diagram of 1 2,q p  with 

respect to parameter 1d  is obtained, as shown in Fig. 2e. When 1 (0,1)d  , the equilibrium point is in a stable 

state. As the parameter value increases, when the parameter 1 1d  , the period doubling bifurcation appears, 

which eventually leads to a chaotic construction. 
 

By fixing parameters 1 2 1 1 210, 1, 2, 2, 1, 0.1, 0.1a b c c d         , the bifurcation diagram of 1 2,q p  

with parameter 2d  is obtained, as shown in Fig. 2f. When the value of parameter 2d  approaches 0, the 

system behavior is relatively stable; when (0,1)b , it enters the chaotic region. As the parameter value 

increases, the system behavior becomes stable when the parameter 1b  . 
 

Bifurcation diagram 3g shows the influence of the adjustment speed parameter 1  of output 1q on the 

equilibrium point. When other parameters are
1 2 1 2 210, 1, 2, 2, 0.1, 2 0.1a b c c d d       ， , 
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respectively, it can be observed from Fig. 2e that, when 1 (0,0.1)  , the equilibrium point is roughly in a 

stable state, and when 1 0.1  , the behaviour of the equilibrium point begins to become complex and 

chaotic. 
 

  

 
Fig. 2e. 1 2,q p  image changing with parameter 1d  

 
Fig. 2f. 1 2,q p  image changing with parameter 2d  

 

Bifurcation diagram 3h shows the influence of the adjustment speed parameter  of price on the 

equilibrium point. When other parameters are , 

respectively, it can be observed from Fig. 2f that, when , the equilibrium point is roughly in a 

stable state. As the value of  increases, the period doubling bifurcation begins to appear, and then the 

system behavior gradually becomes chaotic. 
 

  

 
Fig. 2g. 1 2,q p  image changing with parameter 1  

 
Fig. 2h. 1 2,q p  image changing with parameter 2  

 

4 CONCLUSION 
 
In this paper, we study the complex dynamic behavior of a kind of mixed duopoly game about price and 
quantity competition. It is assumed that each firm maximizes its expected relative profit under bounded 
conditions in each period, and the rational expectation of a discrete dynamic system is obtained. This paper 
studies the construction of a hybrid oligopoly game model whose cost function is a nonlinear function. By 
analyzing the existence and local stability of the equilibrium point of the dynamic system, single parameter 

2 2p

1 2 1 2 25, 1, 2, 1, 1, 2.5 0.2a b c c d d       ，

2 (0, 0.4) 

2
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bifurcation diagrams are used to describe the dynamic phenomenon of the system under the changes of 
product difference, price or quantity adjustment speed. The results show that even a small change in the 
speed of price and quantity adjustment will have a significant impact on the stability of the system. The 
reduction of product differentiation will encourage enterprises to increase profits by raising prices, and the 
change of cost will also have a complex impact on the choice of enterprises. The research on the mixed 
duopoly game model provides important theoretical support for the enterprises’ competitive strategy under 
the demand of its relative profit maximization. 
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