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Abstract. Optical coherence tomography (OCT) is an effective tool for determination of 
pathological topology that reflects structural and textural metamorphoses of tissue. In 
this paper, we propose a report about our examining of the validity of OCT in identifying 
changes using a skin cancer texture analysis compiled from Haralick texture features, 
fractal dimension, complex directional field features and Markov random field method 
from different tissues. The experimental data set contains 530 OCT images with normal 
skin and tumors as Basal Cell Carcinoma (BCC), Malignant Melanoma (MM) and Nevus. 
Speckle reduction is an essential pre-processing part for OCT image analyze. In this 
work, we used an interval type-II fuzzy anisotropic diffusion algorithm for speckle noise 
reduction in OCT images (B- and/or C-scans). The Haralick texture features as contrast, 
correlation, energy, and homogeneity have been calculated in various directions. A box-
counting method and other methodologies have been performed to evaluate fractal 
dimension of skin probes. The complex directional field calculated by the local gradient 
methodology provides important data for linear dividing of species. We also estimated 
autocorrelation function using Markov random fields. Additionally, the boosting has 
been used for the quality enhancing of the diagnosis method. And, finally, artificial 
neural network (ANN) has been utilized for comparing received rates. Our results 
demonstrate that these texture features may present helpful information to discriminate 
a tumor from healthy tissue. We obtained sensitivity about 92% and specificity about 
95% for a task of discrimination between MM and healthy skin. Finally, a universal four 
classes classificatory has been built with average accuracy 75%. © 2017 Journal of 
Biomedical Photonics & Engineering. 
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1 Introduction 
Optical Coherence Tomography (OCT) is a great tool 
for contactless nondestructive study of optically 
inhomogeneous mediums [1]. Recently, effective 
application of OCT has been confirmed in various 
directions of clinical practice such as gastroenterology, 
urology, dermatology, gynecology, ophthalmology, 
otolaryngology, stomatology and others [2, 3]. OCT has 
a position as a non-invasive method of visualization of 
inner structure of optically heterogeneous objects based 
on a principle of low-coherence interferometry using 
near infrared range (0.75–1.3 µm) as light source. OCT 
visualizes an inner microstructure of skin down to 2 mm 
with space resolution 10-15 µm without human tissue 
invasion [4]. Optical coherence tomography is usually 
employed for a measurement of structural changes of 
tissue. The possibility of OCT in detecting changes 
using Haralick’s texture features, fractal dimension and 
complex directional field extracted from different 
tissues has been investigated in this paper.  

The main goal of this work is the development of a 
multimodal method for the texture analysis of OCT 
images. As is well known, one of the most dangerous 
neoplasms, the malignant melanoma, has a large 
absorption coefficient, which means the OCT image has 
a very low level of signal-to-noise ratio (SNR) in the 
region of the neoplasm. Thus, using only one textural 

technique is a priory not enough. However, combining 
texture modalities can guarantee accuracy improvement 
[5]. 

Any coherent method implies speckle noise impact 
for the imaging. In general case, the noise can be 
removed by digital filter from final OCT volume after a 
mandatory PC processing [6]. On a 2D slice of tissue 
volume in vertical (B-scan) or horizontal (C-scan) 
planes, it is available to see dynamics of anisotropic 
growth for malicious area and following deformation 
for encircling healthy one. It is just an image in terms of 
Digital Image Processing and the denoising by way of a 
general image processing filter [7, 8] must be applied. 
We used an interval type-II fuzzy anisotropic diffusion 
algorithm [9, 10] for speckle noise reduction in OCT 
images for this research as more reliable for processing 
on OCT images. 

Haralick texture features have been evaluated in 
different directions as an initial and basic solution for 
the multimodal approach. These quickly computable 
features contain useful information for categorizing, 
classifying diagnostic images as B-scans. However, in 
biology and medicine, the shapes of structures such as 
molecules, cells, tissues and organs also play an 
important role in the diagnosis of diseased tissue [11, 
12]. Fractal dimension could also distinguish the 
structural changes of tissue. Quantitative evaluation of 
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the fractal dimension could be an efficient concept to 
differ tumor tissue from normal healthy tissue [13, 14]. 
So the structural changes in fractal dimension may give 
further information observing cellular layers and injury 
in skin pathology. Besides, the using of the OCT 
techniques contributes to the application of fractal 
analysis in the diagnostics of skin cancer. The 
suspicious skin tissue could be revealed by 
accomplishment of fractal analysis for certain biological 
structures in OCT images. Thus, fractal analysis with 
the OCT imaging techniques could give an efficient 
diagnostic methodology to classify tumors as BCC and 
MM [15]. Also, it can be used for differentiation 
between nevus and healthy skin probes. Usually, we can 
simplify numerical dependencies in tissue topology 
elementary volumes (planes, specifically, if we are 
talking about images) by suggestion, that volume 
depends from only her neighbor ones. It is means, that a 
computing, for instance, Markov random fields’ [16] 
features could be helpful to provide us useful 
information about nature of tumor. 

We included a method of the complex directional 
field [17] to this features’ list to improve the 
characteristics’ quality of tumor recognition. Malignant 
tissue growth anisotropically, which means it may be 
interpreted by the complex directional field calculated 
from a C-scan. General features like variance and 
correlation could be used for dividing scans with tumor 
and healthy probes. A basic idea of a directional field 
application is an attempt to analyze the directions of 
anisotropic growth of malicious skin and possibility of 
tissue further development. High relevant results on 
quasiregular structures such as interferograms, 
fingerprints, crystallograms and many others show us its 
universality [17]. The complex form provides more 
evaluation precision and a relationship between a 
directional field and a weight function. The C-scan 
analyzing gives us an ability to appreciate other planes 
of spreading pathology on the cellular layers. 

Unfortunately, we also should take into account 
additional a priory information about preliminary 
diagnosis when we use textural features for common 
dividing between two classes (MM or BCC, MM or 
Nevus etc.). Thus, it could be a big challenge for 
general practitioner. So, it is very important to have a 
universal classifier for accurate definition between 
many tumor classes. A priory information is also 
required for this case, but preliminary diagnosis could 
be much less accurate. The boosting [18] is used in this 
work with aim to generalize all textural features, 
enhance diagnosis quality and receive classifier for 
discriminating between 4 classes (MM, BCC, Nevus or 
healthy skin). Additionally, we tested ANN as an 
alternative method of machine learning to create a linear 
combination of described textural features for increasing 
sensitivity and specificity. 

 
 
 

2 Materials and Methods 

2.1 OCT-setup scheme and tissue samples 
The OCT system (Fig. 1) comprises of a broadband 
superluminescent laser diode (840±45 nm wavelength 
range, 14mW output power) at the source end, 
Michelson interferometer with 50/50 split ratio to the 
sample and reference arms and a spectrometer at the 
detector end. The spectrometer comprises of a 
diffraction grating (1200 grooves/mm) and a CCD line 
scan camera (4096 pixel resolution, 29.3 kHz line rate). 
The interference signal from the sample and the 
reference arms of the Michelson interferometer is 
detected by the spectrometer and digitized by an image 
acquisition card (NI-IMAQ PCI-1428). Depth profile 
(A-line) is obtained by converting the interference 
signal detected by the IMAQ into linear k-space [19]. 
The imaging axial and lateral resolution of the OCT 
system is about 6 µm in biological tissue. 

 

 
 
Fig. 1 Spectral domain OCT scheme: 1 – broadband source, 2 
– 50/50 beam splitter, 3 – sample arm, 4 – reference arm, 5 – 
spectrometer with grating 6 and CCD camera 7, 8 – computer 
with IMAQ. 

The experimental data set contains 530 OCT images 
with normal skin and tumors as Basal Cell Carcinoma 
(BCC), Malignant Melanoma (MM) and Nevus. The 
institutional Review Board of Samara National 
Research University approved the study protocol. This 
research adhered to the tenets set forth in the 
Declaration of Helsinki. Informed consent of each 
subject was obtained. 

2.2 Haralick features 
For evaluating Haralick features, a gray-level co-
occurrence matrix (GLCM) from image I should be 
calculated. GLCM is based on frequency evaluating of a 
pixel with gray-level value i horizontally (vertically, 
diagonally) connected to a pixel with the value j. Each 
element (i,j) in GLCM specifies the number of times 
that the pixel with value i occurred horizontally adjacent 
to a pixel with value j [20]. 
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Fig. 1 A gray-level co-occurrence matrix sketch [21]. 

For calculating Haralick’s features, image is 
represented as a grate of pixels of mandatory intensity, 
which is used for calculating four GLCMs of relative 
frequencies of pixels’ order in directions 0°, 45°, 90°, 
135°. Textural features based on these matrixes are used 
for images classification as will be described later.  

Homogeneity returns a value that measures the 
closeness of the distribution of elements in the GLCM 
to the diagonal GLCM. 

!! =  !(!, !)
!,!

. (1) 

Correlation serves as a measure of dependency of 
neighboring pixels over the whole image. 

!! =
! − !" ! − !" ! !, !

!!!!!,!
. (2) 

Variance defines a measure of the intensity contrast 
between a pixel and its neighbor over the whole image.  

!! = ! − ! !
!,!

! !, ! . (3) 

Energy is calculated as the sum of squared elements 
in the GLCM. 

!! =
!(!, !)

1 + ! − !
!,!

. (4) 

2.3 Fractal analysis 
In the analysis of OCT images, fractal analysis has been 
used to examine the structural change of biological 
tissue. For example, Fluearu [22] utilized the box 
counting method to compute the fractal dimension to 
characterize porcine arterial tissue. Sullivan [23] used 
the box counting method to evaluate the fractal 
dimension to detect the breast carcinoma. Gao [24] 
applied the power spectrum method to carry out the 
fractal analysis on the layered retinal tissue for 
diagnosing the diabetic retinopathy.  

The most popular algorithm for computing the 
fractal dimension of one dimensional and two 
dimensional data is the box counting, method originally 

developed by Voss [25]. In this method, the fractal 
surface is covered with a grid of !-dimensional boxes or 
hyper-cubes with side length, !  and counting the 
number of boxes that contains a part of the fractal ! ! . 
As for signals, the grid consists of squares and for 
images, the grid consists of cubes. The fractal surface is 
covered with boxes of recursively different sizes. An 
input signal with ! elements or an image of size ! ∗ ! 
is used as input where ! is a power of 2 [26]. 

!!" =
log!(!)
!"# !

!
. (5) 

Other method for counting fractal dimension is 
differential box-counting method [27]. In this method, 
! is counted in other way. Consider that the image of 
size ! × !  pixels has been scaled down to a size    
! × !, where !/2 ≥ ! ≥ 1 and ! is an integer. Then we 
have an estimate of ! = !/! . Now, as in previous 
techniques, consider the image as a 3-D space with 
(!, !) denoting 2-D position and the third coordinate 
(!) denoting gray level. The (!, !) space is partitioned 
into grids of size ! × !. On each grid there is a column 
of boxes of size  × !× !′. If the total number of gray 
levels is ! then  !/!’ =  !/!  . For example, see Fig. 3, 
where ! =  !’ =  3. Assign numbers 1, 2,…to the boxes 
as shown. Let the minimum and maximum gray level of 
the image in the (!, !)th grid fall in box number ! and !, 
respectively. In this approach 

!!  ! , ! =  ! −  ! +  1 (6) 

is the contribution of !!, in (i, j)th grid. For example, in 
Fig. 3,  !! !, ! =  3 −  1 + 1 . Taking contributions 
from all grids, we have  

     !! = !!
!,!

!, ! . (7) 

!! is counted for different values of !, i.e., different 
values of !. Then using (7), it is possible to estimate !, 
the fractal dimension, from the least square linear fit of  
log!! against log(1/!). 

 

Fig. 3 Determination of !! by differential box-counting 
method [28]. 
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Also we used power-spectrum method for counting 
fractal dimension [29]. This method is an application of 
the Fourier power spectrum method. The real-space 
image is Fourier transformed by means of the fast 
Fourier transform and the power spectrum, !!  is 
computed as: 

!! =  !"(!!)! +  !"(!!)!. (8) 

Then the power spectrum of an ideal one dimensional 
fractal signal with dimension D is considered. This has 
the formula 

         !!  = ! ! !
!! , (9) 

where c is a constant and ! is the spectral exponent. The 
index !is related to the Fourier transform dimension !!. 
The value of the spectral ! and !!, can be found out for 
the input signal by fitting a least squares error line to the 
data. The merits of this approach are it is generalizable, 
potentially more accurate and the computation of !! is 
based on an explicit formula [23]. 

2.4 The complex directional field 
Complex directional field defines as: 

!(!, !) = ! !, ! exp !2! !, ! , (10) 

where !(!, !) has a physical meaning as reliability of 
directional field in this point [17]. 

Methods of local gradients are based on the fact, that 
function’s gradient in each point is perpendicular to 
tangency of contour line in this point. These methods 
are based on evaluation of gradient intensity function 
for different positions of local mask inside scanned on 
image outer window ! with size ! ∗ ! (local gradient) 
(!!!,!,!!!,!), where 1 ≤ ! ≤ !, 1 ≤ ! ≤ !. 

tan! !, ! = − !!!!
, 0 ≤ ! !, ! ≤ !, 

!! , !! = !" !, !
!" , !" !, !!" . 

(11) 

The local gradient methodology is divided into two 
classes. First one is methods of gradient projections 
averaging and second one is methods of local direction 
angles averaging. Method of gradient projections 
averaging is based on using of local gradients, 
mandatory to position (!, !) of local mask in calculating 
of intensity function gradient in the center of outer 
window !: 

!! , !! = 1
!" (!!!,! , !!!,!)

!

!!!
.

!

!!!
 (12) 

Method of local direction angles averaging uses 
local gradients (!!!,!,!!!,!) for calculation of local angles: 

!!,! = − tan!! !!!,!
!!!,!

. (13) 

Then direction of trace in the center of outer window 
! can be evaluated by averaging of local angles field: 

! = 1
2 !"# exp (!2!!,!)

!

!!!
.   

!

!!!
 (14) 

The value of a weight function of a direction field 
will be next:  

! = 1
!" exp (!2!!,!)

!

!!!

!

!!!
. (15) 

2.5 Markov random fields 
A Markov random field, Markov network or undirected 
graphical model is a graphical model in which a set of 
random variables have a Markov property described by 
an undirected graph [30]. Connection of nodes with 
each other is defined by localities system as ! =
 {!! |! ∈  !}, where !! is a neighbors set of node !, ! is 
finite set of nodes. Localities system has property: 
! ∉  !!. Random field is called as Markov random field 
in relation to localities system, if for all !! ∈  ! next 
condition is realized: !(!!  |!!/!)  =  !(!!  |!!!), where 
! =  {!!,…  ,!!} – random field, !!– values of random 
variables !! . We use suggestion that OCT-image is 
Markov Random Field, so pixel intensity depends only 
from intensities of neighboring pixels. Non-causal 
locality is used [15]. We estimate autocorrelation 
function as [31]: 

 ! !, ! = 

= ! !, !  !(! + !, ! + !)!
!!!!

!(!!!,!!!)∈!!,!

!
!!!!

!(!!!,!!!)∈!!,!
. (16) 

Then we find variation and mean for using them as 
textural features. 

2.6 Neural networks 
Neural network is a mathematician model that 
simplifies imitated work of human brain. A standard 
neural network consists of many simple, connected 
processors called neurons, each producing a sequence of 
real-valued activations. Input neurons get activated 
through sensors perceiving the environment; other 
neurons get activated through weighted connections 
from previously active neurons. Some neurons may 
influence the environment by triggering actions [32]. 
Neuron is a base element of neural system [33]. It has 
two types of appendages: with input information 
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(dendrites) and with output information (axon, only one 
for translating impulse to other neurons) [34]. Neural 
joints between neurons (synapses) play a role of weights 
to accelerate or slow down impulses. If algebraic sum of 
impulses exceeds threshold value, then neuron translate 
impulse to other neurons [35]. Below you can see a 
mathematician explanation in figure and formulas, 
where !!,… , !!  – input signals;!!,… ,!!  – synaptic 
weights; y – output signal; v – threshold value. 
	

! = 1, !!!!!
!!! ≥ !

0, !!!!!
!!! < !;	 	 (17)	

	

! = ! !!!!!
!!! ;	 	 (18)	

	

! ! = 1, ! ≥ 0
0, ! < 0	,	 	 (19) 

	

where !! = !;  !! = −1. 
 

 

Fig. 4 Model of neuron from artificial neural network [33]. 

This paper uses scaled conjugate gradient 
backpropagation [36] based artificial neural network for 
tissues discrimination (tumor, norm; melanoma, nevus, 
basalioma or healthy skin) quality assessment. The 
ANN is trained in MATLAB using 10 corresponding 
parameters for B-scans as fractal dimensions, counted 
by 1D-box-counting method (with standard deviation), 
2D-differential box counting method and 2D-power 
spectrum method, Haralick features (contrast, 
correlation, homogeneity, energy) and Markov random 
fields features (variance and mean of autocorrelation 
function estimation). The quantity of hidden layers is 
10. For C-scans complex directional features (field 
variance and weight function variance) were used, the 
quantity of hidden layers was 20. 

2.7 Boosting 
Despite the possible good results of classifiers, it is 
always possible to improve them by linear combination. 
In our case we use boosting [18]. The task of precedents 
learning is considered. !,!, !∗,!! , where ! – space of 

objects; !∗:! → !  – unknown target dependence; 
!! = (!!,… , !!)  – is a learning selection; !! =
(!!,… , !!) is a vector of answers on learning objects 
!! = !∗(!!). It is needed to build an algorithm:! → !, 
that approximated target dependence !∗  on all set ! 
[37].  

The task of classification on two classes is 
considered, !! = −1,+1 . We suggest that solution 
rule is fixed, ! ! = !"#$ ! . 

Base algorithms return answers -1, 0, +1. Answer 
!!(!) = 0 means that base algorithm !!  refused from 
classification object !  and answer !!(!)  don’t use in 
composition. Finding algorithm composition has look 
[38]: 

! ! = ! ! !! ! ,… , !! ! = 

= !"#$ !!!!!
!!! ! , ! ∈ ! (20) 

This paper uses conjugate AdaBoost [5] algorithm 
for tissues discrimination (tumor, norma; MM, nevus, 
BCC or healthy skin) quality assessment. The boosting 
for B-scans uses 10 corresponding parameters as fractal 
dimensions (FD), counted by 1D-box-counting method 
(with standard deviation (SD)), 2D-differential box 
counting method and 2D-power spectrum method, 
Haralick features(contrast, correlation, homogeneity, 
energy) and Markov random fields features(variance 
and mean of autocorrelation function estimation). For 
C-scans complex directional features (field variance and 
weight function variance) are used, the maximum 
quantity of trees [39] was 200. 

3 Results and Discussion 
The anisotropic algorithm has been used for denoising. 
Then images are processed by four methods: Haralick’s 
features, fractal analysis, Markov random fields features 
(for B-scans) and complex directional field features (for 
C-scans).  

A CCD-sensor in camera is one of noise sources in 
any acquisition system. The final denoised B-scan and 
original are shown on Fig. 5. One can see background, 
edge of skin and inner layers with characterized dark 
cores (“nests”) of BCC. After filtration, the quality of 
image is visually improved. Moreover, the Signal-to-
Noise Ratio (SNR) increases 1.4 times in heterogeneous 
regions to 4 times in background and homogeneous 
regions. 

The Fig. 6 shows a separating healthy skin from 
MM. The Fisher’s linear discriminant analysis has been 
used in all cases described here [40] and classes are 
good separated by the linear classificatory. The MM–
Skin separating achieved 88% sensitivity and 92.8% 
specificity for the contrast-correlation method. In case 
of correlation-homogeneity and MM–nevus, 88% 
sensitivity for linear classificatory, also as 95.2% 
specificity have been obtained.  
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a 

 
b 

Fig. 5 (a) Original B-scan of BCC and (b) B-scan proceeded 
after filtration. 

The Fig. 7(a) shows a case healthy skin versus MM. 
The sensitivity for variance of AF (MRF) –mean of AF 
(MRF) is 92.8%, specificity is 95.2%. On the Fig. 7(b) 
for MM–BCC we have 90.4% and 83.3% respectively 
by using MRF features. One can observe a stronger 

correlation in this case between features in contrast with 
Fig. 6. Generally, that means this feature’s pair could be 
reduced to one single feature. But, in the case, an angle 
between the all data approximation (the “trend”) line 
and Fishers’ discriminant one is less than π/2, which 
means both features are particularly valuable. 

The Fig. 8 shows us C-scan of skin, the complex 
directional field of image and weight function. Optical 
tissue properties changing leads to modification of 
“sand” texture features can be detected by naked eye 
also. The Fig. 9 shows dividing MM from BCC and 
BCC from Nevus. For MM–BCC sensitivity is 91.5%, 
specificity is 100%. For BCC–Nevus sensitivity is 
100%, specificity is 97.5%. This case is also 
demonstrating a very strong correlation, but, this time, 
this is an inner class correlation. Both classes are good 
correlated and, which is much more important, 
discriminated. This is not correct for small mixed 
groups on right side of both parts of the Fig. 9. That fact 
may be explained by a fact MM and BCC tissues could 
have a very complex topology and a not trivial histology 
report. In many cases the MM is growing inside a nevus 
background. Moreover, the MM/BCC could be mixed 
with other benign tumors. But in our study we choose a 
binary classes system with no details. 

The Fig. 10(a) shows dividing norm from tumor 
with sensitivity in 86.9% and specificity in 89.3% after  

 

 
                                                 a      b 

Fig. 6 (a) Contrast–Correlation for MM–Healthy Skin and (b) Correlation–Homogeneity for MM–Healthy Skin. 

	
a      b 

Fig. 7 (a) Variance MRF–Mean MRF for MM–Healthy Skin and (b) variance MRF–Mean MRF for MM–BCC.
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                                                  a             b 

 
            c  

Fig. 8 (a) Original image, (b) complex directional field and (c) weight function [41, 42]. 

 
a  b 

Fig. 9 (a) Complex directional field variance – weight function variance for MM–BCC and (b) complex directional field variance – 
weight function variance for BCC – nevus.  

 
         a       b 

Fig. 10 (a) Confusion matrixes for Tumor–Norm and (b) MM–Healthy Skin.
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using neural network with scaled conjugate gradient 
backpropagation for pattern recognition. The Fig. 10(b) 
shows dividing MM from healthy skin with sensitivity 
100% and specificity 100%. This incredible result can 
be explained by a little dataset for ANN in this case, so 
it should be checked in bigger sets in future 
investigations 

The Fig. 11(a) shows dividing tumor from norm 
with sensitivity in 73.8% and specificity in 85% after 

using neural network with scaled conjugate gradient 
backpropagation for pattern recognition. The Fig. 11(b) 
shows classification of species between four classes 
(MM, BCC, Nevus and Healthy Skin) with precision 
more than 75% by using boosting. The summary is 
presented in Table 1. This amplification is linked with a 
composition of all features’ information, received from 
tumors and healthy skin on OCT images.

 
a b 

Fig. 11 (a) Confusion Matrix for Norma–Tumor and (b) boosting results for Tumor–Norma case. 

Table 1 Statistical characteristics of separation tissues by utilized features. 

  Tissues Precision Quantity Type 

Category of 
feature Name of feature Tissue1 Tissue2 (sensitivity-

specificity) (images) (B/C-
scan) 

Haralick Contrast–Correlation MM Healthy Skin 88%-92,8% 42/42(84) B 

Haralick Correlation–Homogeneity MM Healthy Skin 88%-95,2% 42/42(84) B 

MRF AF variance–AF mean MM Healthy Skin 92,8%-95,2% 42/42(84) B 

MRF AF variance–AF mean MM BCC 90,4%-83,3% 42/42(84) B 

CDF WF variance–CDF 
variance Nevus Healthy Skin 97,5%-83,7% 80/80(160) C 

CDF WF variance–CDF 
variance BCC Nevus 100%-97,5% 80/80(160) C 

CDF WF variance–CDF 
variance MM BCC 91,5%-100% 80/80(160) C 

Neural 
networks 

Scaled conjugate gradient 
backpropogation Tumor Norma 86,9%-89,3% 84/84(168) B 

Neural 
networks 

Scaled conjugate gradient 
backpropogation Tumor Norma 73,8%-85% 160/160(320) C 

Fractal SD–FD Tumor Norma 70%-71% 42/84(126) B 
Neural 

networks 
Scaled conjugate gradient 

backpropogation MM BCC 100%-100% 42/42(84) B 

Boosting AdaBoost MM, 
BCC 

Nevus, 
Healthy Skin 75% 42/42/42/42(168) B 
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So after that we can say that all methodologies show 
good results in classifying melanoma from healthy skin. 
Boosting and neural networks improve significantly all 
results for other classifications cases. If we compare 
boosting and neural networks, then we reveal that ANN 
shows sensitivity and specificity higher than boosting 
on same set of B-scans. But boosting let us to divide 
between four classes (MM, BCC, nevus and healthy 
skin), but not between 2 classes as other classifiers (for 
example, Tumor (BCC + MM) and Norma (Nevus + 
Healthy Skin). So we receive more universal classifier 
that can be used with high precision without waiting 
histological data for diagnostics. 

For comparing our results with other works, we 
should say few words about achievements of other 
researchers. Gambichler et al. [43] received sensitivity 
of about 75% and specificity of about 93% for MM and 
nevus in the skin tissue. Multipath OCT system [44] has 
been successfully used to detect basal cell carcinoma 
with a sensitivity of 96% and specificity of 75%. 
Combined method using OCT and backscatter Raman 
spectroscopy, characterized in 89-100% sensitivity and 
93-96% specificity for OCT imaging of skin cancer 
[45]. Texture analysis and pattern recognition applied to 
dermoscopy images of malignant melanoma in [46] 
with a sensitivity of 89% and specificity of 93%. We 
also have precision on level more 90% for some cases, 
so that is comparable with simplified investigations. Our 
previous results [41, 42] are improved by creation of 
new more universal classifier, based on boosting and 
new results for CDF with better precision.  

As for diversification of proposed results, utilized 
features not only give us information about texture of 
skin and tumor, but indirectly provide geometric 
characteristics, that can be used by physicians for 
ABCDE criteria. For example, fractal features help us to 
evaluate the “B”, which means irregularity of lesion’s 
border, complex directional field features in potential 
could show us the “E”, evolving of tumor on series of 
images with different dates. Markov random fields 
features and Haralick’s features also have probabilistic 
properties. Implication of different features with 

different heterogeneous nature let us speak about 
multimodality of method, that can be amplified by 
features of statistics analysis technics. 

4 Conclusion 
This research was dedicated to differentiation between 
tumors and healthy skin on OCT images, using 
multimodal approach for cancer recognition by 
evaluation of some textural features. We built universal 
classifier with 75% precision for differentiation between 
four classes (MM, BCC, nevus and healthy skin). The 
high precision of discrimination between MM and BCC 
by three methods separately very good corresponds to 
possibility of visual diagnostics by physicians on OCT 
images due to a specific form of BCC neoplasm. Also 
we could note about good results in differentiation 
between BCC and nevus, MM and healthy skin. The 
good results by CDF and MRF are very promising to be 
tested for new cases and new bigger sets of OCT 
images. The results for MM versus nevus case that were 
received in our previous work [41] were decreased.  

After increasing set of images the best results are on 
level 93.8% for sensitivity and 73.8% for specificity 
with using MRF. Fractal dimensions, Haralick’s and 
CDF features occurred not effective for this task, neural 
networks should be used on bigger quantity of images. 
So we have got to continue our investigations for 
solving this important challenge. For next investigation 
new categories of features (morphological, geometrical, 
statistical, textural etc.) and closer connection with 
ABCDE criteria (new features for asymmetry, borders 
irregularity, diameter, evolution) on 2D (C-scans, 
mostly) and 3D OCT-images should be involved. 
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