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Previously, we demonstrated an integrated genomic convergence and network analysis
approach to identify the candidate genes associated with the complex neurodegenerative
disorder, Alzheimer’s disease (AD). Here, we performed a pilot study to validate the in silico
approach by studying the association of genetic variants from three identified critical
genes, APOE, EGFR, and ACTB, with AD. A total of 103 patients with AD and 146 healthy
controls were recruited. A total of 46 single-nucleotide polymorphisms (SNPs) spanning
the three genes were genotyped, of which only 19 SNPs were included in the final analyses
after excluding non-polymorphic and Hardy–Weinberg equilibrium-violating SNPs. Apart
from our previously reported APOE ε4, four other SNPs in APOE (rs405509, rs7259620,
−rs769449, and rs7256173), one in EGFR (rs6970262), and one in ACTB (rs852423)
showed a significant association with AD (p < 0.05). Our results validate the reliability of
genomic convergence and network analysis approach in identifying the AD-associated
candidate genes.
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INTRODUCTION

Alzheimer’s disease (AD), the most common cause of dementia, is becoming a major health burden
worldwide among the elderly due to the aging population, absence of early diagnostic markers, and
the lack of disease-modifying treatment (Rajasekhar and Govindaraju, 2018). Globally, 46.8 million
were affected by AD in 2015, which is estimated to reach 131.5 million by 2050. As per the
Alzheimer’s’ Disease International (ADI) report, Asia Pacific region would witness rise in patients
with AD (PwAD) from 23 million in 2015 to 71 million with India having 12 million cases (Prince,
2015).

AD is heritable, but genetically complex. The disease, genetically, is segregated into two forms:
familial AD and sporadic, which are clinically indistinguishable. The major genetic signatures
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identified for familial AD are present in the three genes, namely,
the amyloid precursor protein (APP) and the presenilins (PSEN1
and PSEN2), while sporadic AD involves the contribution of both
genetic and environmental factors (Bekris et al., 2010). However,
despite several decades of genetic research, only a small fraction
of the genetic variants associated with AD risk have been
identified (Wightman et al., 2021). Currently, at least 29 major
risk loci for late onset or sporadic AD risk have been uncovered
by various large-scale meta-analysis studies (Jansen et al., 2019;
Wightman et al., 2021). A major issue with the findings of the
genome level studies is the identification of signatures mostly in
the non-coding regions with unknown significance. Furthermore,
the common variants fail to fully explain the underlying
pathophysiology probably due to small effect size (Van
Cauwenberghe et al., 2016; Visscher et al., 2021).

As the vast literature is available on genomic studies involving
different methodologies such as genome-wide studies including
linkage, association, and expression (Talwar et al., 2016),
previously, we employed an integrative approach combining
multiple data sources along with network modeling of
protein–protein interactions to identify the candidate genes
associated with AD which revealed APOE, EFGR, and ACTB
as the hub genes (Talwar et al., 2014). The aim of the present
cross-sectional study was to validate the findings of our genomic
convergence and network analysis approach by investigating the
association of genetic variants from the three genes with AD in
North Indian population.

METHODS

Study Participants and Phenotyping for
Case–Control Study
Individuals of age >50 years and North Indian ancestry attending
outpatient neurobehavioral clinic at the Institute of Human
Behavior and Allied Sciences (IHBAS) from 2010 to 2012 were
enrolled in this cross-sectional study. Family members gave
written informed consent, and the study was approved by the
Institutional Ethics Committee. The other details related to
diagnosis, assessment, investigations, and recruitment of the
patients with AD (PwAD) and healthy controls are provided
in Supplementary File S1, Methods. The demographic and
clinical characteristics of the recruited PwAD as well as
healthy controls were reported previously (Talwar et al., 2017).

Genotyping
Genomic DNA was isolated from the peripheral blood leukocytes
using a modification of a salting out procedure (Miller et al.,
1988). The functionally important single-nucleotide
polymorphisms (SNPs) in APOE, EGFR, and ACTB genes
were screened from the literature, and then the functional
significance of the SNPs was determined by screening
databases including HaploReg, RegulomeDb, rVarBase, and
Braineac (in build in vitro and in vivo evidence). Please refer
to Supplementary File S2 for more details. The selected SNPs
were genotyped by AceProbe Technologies (India) Pvt. Ltd. by
using the Sequenom MassARRAY iPLEX platform (Sequenom

Inc., San Diego, United States). The list of primers used is
provided in Supplementary File S1, Supplementary Table S1.

Statistical Analysis
The SNP association analysis was conducted in PLINK version
1.09 (Purcell et al., 2007) and gPLINK (https://zzz.bwh.harvard.
edu/plink/gplink.shtml). The imputation, quality control (QC),
and association analysis procedure are described in
Supplementary File S1, Methods. In brief, after imputation
and QC, univariate SNP association analysis was carried out
by 2×2 contingency table of χ2 test or Fisher’s exact test. The
Benjamini–Hochberg (BH) method was used for multiple testing
corrections based on the false discovery rate (FDR) (Benjamini
and Hochberg, 1995; Clarke et al., 2011).

Logistic regression analysis was conducted to assess the
differences of genotype frequencies between AD and non-
demented control groups. The additive model, the dominant
model and the recessive model were used in the logistic regression
analysis for SNP association with disease phenotype adjusting for
age, gender, and education status as covariates. In the additive
model, homozygotes for the major allele, and heterozygotes and
homozygotes for the minor allele were coded to a quantitative
numeric variable for genotypes (0, 1, and 2), implying the additive
effects of allele dosage. The dominant and recessive models
assume the full dominance [genotype coding (0, 1, and 1)] or
recessive [genotype coding (0, 0, and 1)] for the minor allele
(Purcell et al., 2007; Laird and Lange, 2011). The linkage
disequilibrium (LD) pattern was analyzed using Haploview
software (Barrett, 2009). The level of significance was set to 0.05.

RESULTS

Basic Characteristics of Study Subjects
A total of 108 PwAD (60.2% men) fulfilling the selection criteria
along with 159 healthy controls (51.6% men) of similar ethnicity
were enrolled (Talwar et al., 2017). A significant difference was
observed in the mean age and education status between the cases
and controls (p < 0.05) (Talwar et al., 2017), requiring an
adjustment of the two potential confounders during the
association analysis.

Frequency Distribution of Genetic Variants
A total of 46 functional SNPs, 10 from APOE, 24 from EGFR, and
12 from ACTB were selected for the case–control association
analysis. Out of the total 267 individuals, 12 were excluded either
due to the lack of phenotypic data or insufficient DNA and 6 due
to the failure of genotyping, resulting in data from 249 total
individuals (103 PwAD and 146 controls). Of the 46 SNPs, 12
were found to be non-polymorphic in individuals from the two
groups, while 15 failed the Hardy–Weinberg equilibrium (HWE)
test in the controls (Supplementary Files S3a,b). The remaining
19 SNPs were included in the final analyses. Among these 19
SNPs, such as APOE rs429358 and rs7412, resulted in ε2
(rs429358, T; rs7412, T), ε3 (rs429358, T; rs7412, C), and ε4
(rs429358, C; rs7412, C) haplotypes. We previously reported ε3 to
be the most common in both cases and controls, while the
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presence of the ε4 allele increased the risk of having AD (Talwar
et al., 2017).

Allelic and Genotypic Associations
The allelic and genotypic distribution of 19 SNPs from the three
genes in the genotyped 249 samples was evaluated for the
association with AD (Supplementary File S4a). Apart from
the previously reported APOE ε alleles, three other SNPs,
namely, rs405509, rs7259620, and rs769449, from APOE, and
rs6970262 from EGFR showed a significant association in
genotypic, Cochran–Armitage trend and allelic analysis (p <
0.05) (Table 1). None of the genotyped SNPs from the ACTB
gene showed a significant allelic association. The data for
significant associations are provided in Table 1 and for all 19
SNPs in Supplementary Table 4a.

Logistic regression analysis performed for genotypic
association analysis after adjustment for age, gender, and
education status showed a significant association of rs405509

(Padditive � 0.003, OR � 0.51, 95% CI � 0.33–0.79 and Pdom �
0.003, and OR � 0.39, 95% CI � 0.21–0.73), rs7259620 (Padditive
� 0.007, OR � 0.56, 95% CI � 0.37–0.85 and Pdom � 0.005, OR �
0.44, 95% CI � 0.25–0.79), rs769449 (Padditive � 2.9E-06, OR � 9.75,
95% CI � 3.76–25.30 and Pdom � 1.2E-06, OR � 10.48, 95% CI �
3.98–27.59), and rs7256173 (Padditive � 0.021, OR � 5.54, 95% CI �
1.30–23.69 and Pdom � 0.021, OR � 5.54, 95% CI � 1.30–23.69)
from APOE. In EGFR, rs6970262 showed significant association
only in the additive model (Padditive � 0.030, OR � 2.18, 95% CI �
1.08–4.41), and in case of ACTB, rs852423 showed significant
association only in the recessive model (Precessive � 0.032, OR �
2.18, 95% CI � 1.07–4.46) with AD risk after adjustment for age,
gender, and education status. The data for significant associations
are provided in Table 2 and for all 19 SNPs in Supplementary
Table S4b. Furthermore, rs769449 in APOE was found to be in a
strong degree of LD with rs429358 (R2 � 0.96) and rs7259620 was
in LD with rs405509 (R2 � 0.88). Despite this, we did not observe
the formation of any haplotype block in the study.

TABLE 1 | Association analysis of APOE, EGFR, and ACTB SNPs with AD risk among PwAD (N � 103) and non-demented controls (N � 146).

Gene SNP Location Chr MAF Nucleotide
change

PGENO PTREND FDRTREND PALLELIC FDRALLELIC PDOM FDRDOM PREC FDRREC

APOE rs405509 Promoter 19 0.45 g.4798T > G 0.006 0.003 0.013 0.005 0.020 0.002 0.013 0.133 0.399
rs7259620 Promoter 19 0.41 g.3750G > A 0.008 0.002 0.013 0.002 0.015 0.003 0.013 0.065 0.292
rs769449 Intron 2 19 0.09 g.5964G > A 3.1E-

07*
1.4E-
07

2.60E-06 3.4E-08 6.5E-07 2.2E-
07*

4.2E-06 0.028* 0.169

EGFR rs6970262 Intron 21 7 0.076 g.178039A
> G

0.051* 0.018 0.067 0.005 0.020 0.069* 0.264 0.036* 0.169

ACTB rs852423 Intron 3 7 0.45 g.6867A > G 0.041 0.060 0.190 0.059 0.159 0.496 0.496 0.012 0.106

SNP: single-nucleotide polymorphism identifier; Chr; chromosome;MAF: minor allele frequency; GENO: genotypic association; TREND: Cochran–Armitage trend; DOM: dominant model;
REC: recessivemodel; FDR: Benjamini andHochberg corrected p values; P: asymptotic p values calculated under chi square test statistic; *p values calculated under fisher exact test; Bold
signifies p < 0.05.

TABLE 2 | Association of APOE, EGFR, and ACTB SNPs with Alzheimer’s disease under logistic regression analysis.

Gene SNP Genotype, N A1 Punadjusted

(N = 249)
OR

(95%CI)
Padjusted

additive
model

(N = 237)

OR
(95%CI)

Padjusted

dominant
model

(N = 237)

OR
(95%CI)

APOE TT TG GG
rs405509 NAD

NNDC

39
29

51
88

13
29

G 0.003 0.55 (0.37–0.82) 0.003 0.51 (0.33–0.79) 0.003 0.39 (0.21–0.73)

GG GA AA
rs7259620 NAD

NNDC

47
40

44
76

12
30

A 0.003 0.56 (0.38–0.82) 0.007 0.56 (0.37–0.85) 0.005 0.44 (0.25–0.79)

GG GA AA
rs769449 NAD

NNDC

71
137

28
9

4
0

A 2.8E-06 6.36 (2.93–13.80) 2.9E-06 9.75
(3.76–25.30)

1.2E-06 10.48 (3.98–27.59)

CC CT TT
rs7256173 NAD

NNDC

96
142

7
4

0
0

T 0.138 2.59 (0.74–9.08) 0.021 5.54
(1.30–23.69)

0.021 5.54 (1.30–23.69)

EGFR AA AG GG
rs6970262 NAD

NNDC

7
2

10
10

86
134

A 0.023 1.98 (1.10–3.58) 0.030 2.18 (1.08–4.41) 0.060 2.34 (0.97–5.65)

OR: odds ratio; CI: confidence interval; A1: minor/effect allele; NAD: Genotypes number in AD; NNDC: Genotypes number in non-demented controls; P adjusted: p values adjusted with age,
gender and education status in logistic regression analysis. Bold signifies p < 0.05. Additive model is based on the additive effects of allele dosage. Dominant model assumes the full
dominance for the minor allele. The OR > 1, means A1 increases relative risk relative to A2. All values are calculated using PLINK, 1.09.
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DISCUSSION

In the present study, we conducted a pilot genetic association
analysis comprising 249 study subjects to validate the findings of
our genomic convergence and network analysis using the in silico
approach. A total of 46 SNPs in the three identified hub genes,
namely, APOE, EGFR, and ACTB, were screened for functional
genetic variants to perform the association study. The study
observed a significant association of six SNPs with AD:
rs405509, rs7259620, rs769449, and rs7256173 from APOE,
rs6970262 from EGFR, and rs852423 from ACTB. Despite
strong LD between the SNPs of the APOE gene, we did not
observe a haplotype block in the studied cohort. This could
potentially be due to the presence of multiple SNPs in LD,
where uneven distance makes it difficult to determine the
exact boundaries of the haplotype block (Takeuchi et al., 2005).

APOE is the most widely studied gene with respect to AD
genetics due to its high abundance in different brain cells
(Lefterov et al., 2019). Published reports indicate that APOE
polymorphisms are associated with AD pathophysiology
involving the plaque deposition of intraneuronal amyloid-β
(Aβ) aggregates, and hyperphosphorylated tau-mediated
neurodegeneration (Yamazaki et al., 2019). In addition,
peripheral ApoE also plays a potential role in lipid
homeostasis in the brain (Martinez-Morillo et al., 2014). We
previously reported the APOE ε4 allele to be associated with
increased susceptibility for AD (Talwar et al., 2017). In the
current study, apart from the epsilon alleles, we reported other
APOE promoters and intronic SNPs including rs405509,
rs7259620, rs769449, and rs7256173 to be associated with AD.
The rs405509 TT genotype was observed to be over-represented
in PwAD. In a previous case–control study, the rs405509 “T”
homozygote was associated with the increased risk for developing
AD (Lambert et al., 2002). The same group also reported that the
patients with the rs405509 TT genotype had higher levels of total
Aβ in the Brodmann area of the cerebral cortex than those with
GT/GG genotypes (Lambert et al., 2001), indicating the
involvement of rs405509 in the processing of β amyloid.
Individuals homozygous for the “T” allele were also reported
to have higher number of senile plaque in hippocampus CA1 and
the subiculum (Berr et al., 2001), and the elderlies displayed
cognitive impairment and low gray matter volume (Ma et al.,
2016). Such effects could be due to lower brain ApoE levels in
individuals with the TT genotype at rs405509. Substitution of
rs405509 “T” to the minor allele “G” significantly increases the
APOE promoter activity (Artiga et al., 1998), suggesting a
protective effect of the rs405509 “G” allele in AD, as observed
in our study. These findings provide evidence that rs405509 may
be involved in the APOE gene regulation and, therefore, may
serve as a potential biomarker in AD.

The association of another APOE promoter SNP, rs7259620,
in the present study was supported by similar findings from a
case–control study involving Japanese population where the
minor allele “A” was observed to have a protective role in
LOAD (Takei et al., 2009); however, its role in APOE
regulation is still unexplored. We also found the intronic
APOE SNP, rs769449, to be highly associated with AD, where

the presence of “A” allele showed an increased risk. The SNP was
previously reported to be associated with a cognitive decline
among European-Americans and African-Americans (Zhang and
Pierce, 2014). Cruchaga et al. (2013) observed rs769449 to be
associated with the CSF levels of tau and ptau proteins, two key
biochemical markers of axonal degeneration, neuronal loss, and a
cognitive decline in PwAD, suggesting a role of this intronic SNP
in AD pathophysiology. Nevertheless, the effect of “G” to “A”
substitution in this SNP has not been investigated yet. Last, the
APOE genetic variant, rs7256173, has not been previously
associated with AD.

Another gene, EGFR, encodes the epidermal growth factor
receptor, a transmembrane protein that binds to the epidermal
growth factor. EGFR knock-out mice were reported to develop
neurodegeneration leading to early death due to defects in cortical
neurogenesis, indicating that EGFR signaling plays a role in
neurogenesis (Wong and Guillaud, 2004). Our study identified
“A” allele/AA genotype of the EGFR intronic variant rs6970262 to
be significantly associated with increased AD risk.

Although rs6970262 has not been previously associated with
AD, previous investigations from our group reported EGFR as a
potential candidate for assessing AD risk (Talwar et al., 2014;
Talwar et al., 2017). The EGFR was indicated as a factor that
mediates beta amyloid (Aβ) in animal models (Wang et al., 2012).
Moreover, poor olfactory discrimination associated with ADmay
be due to the reduced EGF-dependent olfactory neurogenesis
(Enwere et al., 2004). The olfactory system is a relevant effector in
different animal models of neurodegenerative diseases (Loseva
et al., 2009). Moreover, the olfactory bulbectomy is a known
animal model of depression (Song and Leonard, 2005), and the
neuroimaging studies found reduced olfactory bulb volume in
depressive patients (Negoias et al., 2010). Depression is a risk
factor for AD (Modrego and Ferrández, 2004; Ownby et al., 2006;
Sun et al., 2008) and frequently observed in preclinical AD
(Geerlings et al., 2000; Visser et al., 2000). It has been
reported that soluble Aβ induces a depressive-like phenotype
in rats (Colaianna et al., 2010). Hence, considering that a pilot
study has found a possible relationship between depression and
EGFRmutation status in patients with non–small-cell lung cancer
(Jacobs et al., 2017), the EGFR intronic variant rs6970262 could
be useful to characterize depressed patients with high risk to
develop AD.

The presence of immunoreactive EGFR was also observed in
neuritic plaques from PwAD (Birecree et al., 1988). Similar
findings were reported in the brain vasculature of demented
elderly patients where the increased EGFR expression was
related to proliferative or regenerative activities in the vascular
architecture of PwAD, suggesting that it might be used as a
potential biomarker for early diagnosis of dementia using skin
biopsy (Styren et al., 1990; Styren et al., 1993).

Our study also involved important SNPs from the gene ACTB,
which encodes the non-muscle cytoskeletal actin, β-actin.
Mutations in this gene cause Baraitser–Winter syndrome 1
and juvenile-onset dystonia (https://www.genecards.org/cgi-
bin/carddisp.pl?gene�ACTB, last update: 24 May 2021). Due
to the highly conserved sequence and ubiquitous expression of
ACTB, the gene is used as a reference for the normalization of
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target gene expression in mRNA and protein studies. However,
Leduc et al. (2011) found the gene to be an unsuitable reference
gene due to lower stability of mRNA in the frontal cortex of
PwAD, suggesting dysregulation of the gene in AD. In addition,
an integrated in silico analysis involving four different gene
expression datasets also found ACTB to be a central gene in
AD pathophysiology (Hu et al., 2015). Our study observed a
significant genotypic association of the ACTB variant rs852423
with increased susceptibility to AD. The association of this SNP
with AD also appears in the signaling network presented in the
database NeuroMMSig (Domingo-Fernández et al., 2017).

The current knowledge is limited, but a connection from this
gene and glucose metabolism in AD pathophysiology is worth to
be explored in the future studies. In fact, in vitro experiment that
generated insulin-secreting beta cells from human pluripotent
stem cells has shown the fundamental role of actin in pancreatic
progenitor gene expression and endocrine function (Hogrebe
et al., 2020; Siehler et al., 2020). The pancreas has a central role in
the glucose metabolism, and the glycolytic dysfunction has been
associated with the dysfunction of Alzheimer’s brains, such as
synaptic impairment, brain atrophy, mitochondrial impairment,
and Aβ deposition (Zhang et al., 2021). Moreover, diabetes has
been classified as a risk factor for AD (Profenno et al., 2010),
especially when associated with the APOE ε4 genotype. The
subjects carrying an APOE ε4 allele without dementia have
shown a reduction in the cerebral metabolic rate of glucose
(Mosconi et al., 2008).

The present study has some inherent limitations such as the
low sample size. However, our study was a pilot investigation to
validate the findings of our in silico approach (Talwar et al., 2014),
and therefore, a small sample size may yield a greater scientific
value relative to the expense of the genotyping required to
perform the study (Bacchetti et al., 2011). In addition, our
study performed the association analysis with very few genes,
in which the role of potentially actionable novel targets may get
overlooked. Therefore, to establish the robustness of our in silico
findings, future studies with larger sample sizes using an
expanded gene list need to be performed.

In summary, this study provides the first evidence of the
association of the EGFR genetic variant rs6970262. Our
previous in silico analysis (Talwar et al., 2014) and its
validation in clinical samples in the current study provide
evidence of the association of regulatory variants present in
the promoter and intronic regions of APOE, EGFR, and
ACTB, highlighting the importance of integration of
experimental and computational approaches to reveal the
clinical significance of genetic variants in a disease phenotype.
However, as multiple SNPs are implicated in complex disorders
such as AD, a combination of genetics with biochemical serum
markers would be crucial to uncover the pathophysiological
cascade (Talwar et al., 2014; Talwar et al., 2017). Our results
may help to reveal the functional role of these variants in the
pathogenesis of AD. Further validation studies are required to
confirm our findings and elucidate the mechanistic role of these
polymorphisms in AD pathophysiology.
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