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ABSTRACT 
 

Effect of zinc and silica solubilizing bacteria and their consortia on paddy was studied under field 
conditions at Agricultural Research Station, Janagamaheswarapuram, Andhra Pradesh. Thirteen 
treatments were assessed for availability of nutrients viz., Nitrogen, Phosphorus, Potassium, Zinc 
and Silica in soil and concentration of Nitrogen, Phosphorus and Potassium in plant at 45, 90 and 
120 days after sowing (DAS).Significantly highest nitrogen (198.9, 262.3 and 240.2 kg ha-1), 
available phosphorus (36.7, 64.7 and 40.6 kg ha-1), potassium (221.4, 349.6 and 263.5 kg ha-1), 
zinc (0.86, 1.14 and 0.98 ppm) and silica (66.8, 98.9 and 84.8 ppm) were recorded in T13 (RDF + 
ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3) at 45, 90 and 120DAS, respectively. In the plant, 
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nitrogen (0.89, 1.10 and 0.98 %), phosphorus (0.46, 0.67 and 0.58 %) and potassium (1.87, 2.29 
and 1.98 %) were significantly highest at 45, 90 and 120DAS, respectively, in T13. There was 
increase in the available nutrient content upto90 DAS which then decreased at 120DAS. It is 
inferred that consortia of two zinc solubilizing and two silica solubilizing microorganisms (T13) is 
useful for increased availability of Nitrogen, Phosphorus, Potassium, Zinc and Silica in soil and 
increased uptake of NPK by rice plant, which in turn reduce exogenous chemical fertilizers. 
 

 

Keywords: Paddy; zinc solubilizing bacteria; silica solubilizing bacteria; Zinc; silica bacterial 
consortia; nutrients. 

 

1. INTRODUCTION 
 

India is one of the leading producers of rice crop. 
Rice is the basic food crop and being a tropical 
plant, it flourishes comfortably in a hot and humid 
climate. Rice is mainly grown in rain-fed areas 
that receive heavy annual rainfall. That is why it 
is fundamentally a kharif crop in India. Plants 
need several macro and micro nutrients for their 
growth and development. Nitrogen, phosphorus 
and potassium (NPK) are the primary nutrients in 
commercial fertilizers. Each of these fundamental 
nutrients plays a key role in plant nutrition. 
Nitrogen is considered to be the most important 
nutrient, and plants absorb more nitrogen than 
any other element. Nitrogen is essential in 
making plants healthy as they develop and 
nutritious to eat after they’re harvested. 
Phosphorus, is linked to a plant’s ability to use 
and store energy, including the process of 
photosynthesis. It’s also needed to help plants 
grow and develop normally. Potassium is the 
third key nutrient of commercial fertilizers. It 
helps strengthen plants’ abilities to resist disease 
and plays an important role in increasing crop 
yields and overall quality. In rice zinc (Zn) is one 
of the most important micronutrients necessary 
for the normal healthy growth and reproduction of 
plants. Silica is useful for proper cuticle 
development and grain formation in rice [1]. Zinc 
Solubilizing Bacteria (ZnSB) and Silica 
Solubilizing Bacteria (SiSB) and their consortia 
improved the bioavailable fraction of N, P, K, Zn 
and Si to host plant for enlightening the crop 
growth, yield and quality [2]. It will directly effect 
on the crop nutrient content and yield 
parameters. Inoculation of rice with silica 
solubilizing bacteria enhanced available silica in 
soil and silica content in plant and improved rice 
yield. Dissolution of silicate results in rendering 
phosphorus available for plant absorption as 
silica competes with phosphorus fixation sites; 
silica acts like auxiliary for phosphorus in plants 
[3].The development and efficiency of 
commercial microbial inoculants such as AMF, 
biofertilizers, and microbe-based decomposers 
offer farmers the potential to reduce synthetic 

farm inputs (fertilizers and pesticides) and 
stimulate the opportunity of integrated nutrient 
and pest management practices for sustainable 
agriculture [4]. Hence, an experiment was 
conducted to study the availability of nutrients in 
soil and uptake by rice plants by inoculating 
selected zinc and silica solubilizing isolates and 
their combinations under field conditions. 
 

2. MATERIALS AND METHODS 
 

Paddy variety, MTU-7029 (Swarna) was sown in 
black soil by adopting 20cm X 10 cm spacing at 
ARS, Jangamaheswarapuram. Recommended 
agronomic practices including weed 
management, fertilizer management and plant 
protection were adopted. The fertilizers were 
applied as per the treatment combinations. An 
entire uniform dose of 23 kg N, 60 kg P2O5 and 
60 kg K2O ha-1 was applied as basal at the time 
of sowing through urea, single super phosphate 
and muriate of potash, respectively to all the 
plots. Along NPK extra 25 kg ha-1 zinc sulphate, 
120-200 kg ha-1 calcium silicate was applied in 
the zinc and silica nutrient imposed treatments 
i.e., T3 and T4. 

 

Thirteen treatments, replicated thrice, were 
imposed incompletely randomized design as 
detailed below. 
 

Treatment details: 
 

T1: RDF (Control) 
T2: RDF + ZnSO4 
T3: RDF + Calcium silicate 
T4: RDF + ZnSO4 + Calcium silicate 
T5: RDF + ZnKJJ-4 (Zinc isolate from Kurnool 
Dist., Jupadu bunglow Mandal and Jupadu 
bunglow village soil sample - 4) 
 

T6: RDF + ZnPGG-1(Zinc isolate from 
Prakasham Dist., Giddaluru Mandal and 
Giddaluru Village soil sample - 1) 
 

T7: RDF + SiKPP-1(Silica isolate from Kurnool 
Dist., Pamulapadu Mandal and Pamulapadu 
Village soil sample - 1) 
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T8: RDF + SiPYY-3 (Silica isolate from 
Prakasham Dist., Yerragondapalem Mandal and 
Yerragondapalem Village - 3) 
T9: RDF + ZnKJJ-4 &ZnPGG-1 
T10: RDF + SiKPP-1 &SiPYY-3 
T11: RDF + ZnKJJ-4+ SiKPP-1 
T12: RDF + ZnPGG-1+ SiPYY-3 
T13: RDF + ZnKJJ-4 &ZnPGG-1 + SiKPP-1 
&SiPYY-3 
 

Where, 
RDF = Recommended dose of fertilizer 
ZnKJJ-4, ZnPGG-1, SiKPP-1 and SiPYY-3: 
Efficient zinc and silica solubilizing isolates. 
 

2.1 Estimation of Nutrient (N, P, K, Zn 
and Si) Content in Soil Samples 

 

2.1.1 Soil sample collection and processing 
 

Soil samples collected at 45, 90 and 120 DAS, 
from all the 13 treatments were dried under 
shade, gently ground with wooden hammer, 
sieved through 2 mm sieve and stored in labelled 
new polythene lined cloth bags for analysis.  
 

2.1.2 Available nutrients (nitrogen, 
phosphorus, potassium, zinc and 
silica) in soil 

 

Processed soil samples were used for analysing 
available nutrients (Nitrogen, phosphorus, 
potassium, zinc and silica) in soil and nutrient (N, 
P and K) content in plant samples by adopting 
standard procedures (Table 1). Concentration of 
macronutrients was expressed as % and micro 
nutrients in ppm. 
 

2.2 Estimation of Nutrient (N, P and K) 
Content in Plant Samples 

 

2.2.1 Collection, preparation and analysis of 
plant samples 

 

The plant samples were collected at 45 DAS, 90 
DAS and 120 DAS, washed thoroughly with 

distilled water and dried under shade. Then, they 
were dried in hot air oven at 65°C till a constant 
weight was obtained. Dried plant samples were 
ground in a wooden pestle and mortar and stored 
in polythene bags for further chemical analysis. 
N, P, K, Zn and Si contents were estimated by 
following standard methods. 
 

2.2.2 Digestion of plant sample 
 

Powdered whole plant samples were separately 
treated with concentrated HNO3 overnight for pre 
digestion. Then, the pre-digested samples were 
treated with diacid mixture [HNO3:HClO4 (9:4 
ratio)] and digested on sand bath at low 
temperature till colourless white precipitate was 
obtained. The residue was dissolved in 6N HCl, 
filtered, made to known volume by using 6N HCl. 
This was used for further nutrient analysis (Table 
1). 
 

Content of N, P and K were calculated as given 
below. 
 

% N in plant sample = 
T.Vx 0.00028 x 100 

0.1
 

 

 = 0.28 x T.V wherein 
 

Weight of sample = 0.1g 
Normality of H2SO4 = 0.02 
 

Titration value (TV) = Sample titration value – 
Blank titration value 
 

Final volume (50 ml) ×100×100 
 
% 𝑃 𝑖𝑛 𝑝𝑙𝑎𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 = 

 

𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑛𝑐. 𝑖𝑛 𝑝𝑝𝑚 ×
 𝐹𝑖𝑛𝑎𝑙 𝑣𝑜𝑙𝑢𝑚𝑒 (50 𝑚𝑙)  × 100 × 100

𝑊𝑡 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (1𝑔) × 𝑎𝑙𝑖𝑞𝑢𝑜𝑡 (5𝑚𝑙)  × 106
 

 

% 𝐾 𝑖𝑛 𝑝𝑙𝑎𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 =
100×100

𝑊𝑡.𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒 (1𝑔) ×106  
 

=  𝑅 × 0.01 

 

Where R = concentration of K in ppm obtained 
from standard curve 

 

Table 1. Methodology adopted for estimation of available nutrients and content of N, P and K 
in plant 

 

Nutrient  Method Adopted Reference 

Available N in soil Alkaline permanganate method [5] 
Available P in soil Olsen’s method [6] 
Available K in soil Neutral 1 N Ammonium acetate method  [7] 
Available Zn in soil  DTPA extraction method followed by determination AAS/ICP [8] 
Available Si in soil acetic acid extractant method [9] 
N content in plant Kelplus method [10] 
P content in plant Vanadomolybdo-phosphoric acid yellow colour method [11] 
K content in plant Neutral 1 N Ammonium acetate method [7] 
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3. RESULTS AND DISCUSSION 
 

Rhizosphere management, through use of 
beneficial microbes helps to enhance nutrient 
availability in soil for the better plant growth via 
solubilization of zinc, potassium and phosphate, 
nitrogen fixation and phytohormones production 
[12]. The results of application of selected zinc 
and silica solubilizing isolates and their 
combinations on the direct sown paddy crop are 
reported as detailed below. 
 

3.1 Influence of Zinc and Silica 
Solubilizing Bacterial Consortia on 
Available Nutrients in the Soil  

 

3.1.1 Available nitrogen in soil  
 

Available nitrogen content was 142.03 kg ha-1 
(Table 2) in the initial soil sample. At 45 DAS all 
the treatments showed increased available 
nitrogen content compared to initial stage (Table 
3). Highest available nitrogen was recorded in 
T13, RDF + ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & 
SiPYY-3 (198.9 kg ha-1) followed by T12 (RDF + 
ZnPGG-1 + SiPYY-3) i.e., 196.7 kgha-1,which 
were on par. Available nitrogen content further 
increased with highest recorded in T13 (262.7 kg 
ha-1) at 90DAS, followed by T12 (258.7 kg ha-1) 
and both were on par. At 120 DAS available 
nitrogen content decreased to 240.2 kg ha-1 in 
T13 followed by T12 (238.5 kg ha-1) and T11 (237.2 
kg ha-1) and were superior to other treatments 
(Table 3). 
 

Similar findings were obtained by [13] where 
biofertilizers and the recommended dose of 
fertilizers expanded the soil available nitrogen 
(63 %). The most effective treatment, was ZSB + 
PSB + KRB + RDF[14]which reported increased 
available nitrogen with the applied fertilizers and 
biofertilizers. 
 

It was reported that application of Si alleviates 
the nitrogen deficiency in different crops by 
improving the nitrogen acquisition through root 
system [15]. Under limited availability of N, 
application of silicic acid has increased the 
uptake and accumulation of plant N [16] and [17] 
in rice [18] and [19]. 
 

3.1.2 Available phosphorus in soil 
 

Phosphorus helps a plant convert other nutrients 
into usable building blocks to grow. Available 
phosphorus content was initially 26.28 kg ha-1 
(Table 2). At 45 DAS all the treatments exhibited 
increased available content of phosphorus than 
initial (Table 3). The highest phosphorus 

availability was registered in T13, RDF + ZnKJJ-4 
& ZnPGG-1 + SiKPP-1 & SiPYY-3 (36.7 kg ha-1) 
followed by T12 (RDF + ZnPGG-1 + SiPYY-3) i.e., 
35.4 kg ha-1and were on par. At 90 DAS also 
increased available phosphorus was observed in 
T13 (64.7 kg ha-1), on par with T11 (RDF + ZnKJJ-
4 + SiKPP-1) i.e., 62.4 kg ha-1and T12 (RDF + 
ZnPGG-1 + SiPYY-3) (59.6 kg ha-1). At 120 DAS 
available phosphorus content decreased to 40.6 
kg ha-1 in T13 and found superior to T12 (38.5 kg 
ha-1) (Table 3). An increasing trend until 90 DAS 
followed by decreasing trend by 120 DAS though 
more than 45 DAS was observed in general for 
all the available major nutrients. 
 

Present results indicates that available 
phosphorus content increased slightly and 
depleted gradually in all the treatments with 
insufficient dose of phosphatic fertilizers. 
Inoculated zinc and silica microbial consortium 
stimulated root length development under 
reduced phosphorus supply with stabilized 
ammonium by 52 %. This was accompanied by 
the increased auxin production capacity of 
rhizosphere bacteria [20]. 
 

3.1.3 Available potassium in soil 
 

Potassium has significant role in the regulation of 
water in plants (osmoregulation). Potassium 
influences both uptake of water through plant 
roots and its loss through the stomata. Available 
potassium content was 202.14 kg ha-1 (Table 2) 
in the initial soil sample. At 45 DAS all the 
treatments showed increased potassium 
compared to initial stage (Table 3). The highest 
available potassium was recorded in T13, RDF + 
ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3 
(221.4 kg ha-1) followed by T12 (RDF + ZnPGG-1 
+ SiPYY-3) i.e., 220.9 kg ha-1 and T11 (220.6 kg 
ha-1) and were on par. At 90 DAS, all the 
treatments showed increased potassium 
availability than 45 DAS; significantly highest 
available potassium was recorded in T13 (349.6 
kg ha-1). At 120 DAS amount of available 
potassium decreased to 263.5 kg ha-1in T13 but 
significantly higher than other treatments (Table 
3). 
 

Similar observations was made by earlier works 
[21] who reported increased chlorophyll content 
by inoculated bacteria, soluble and rock 
potassium. Many microorganisms like zinc and 
silica solubilizers in the soil, apart from zinc and 
silica, they can solubilize ‘unavailable’ forms of K 
bearing minerals, such as micas, illite and 
orthoclases by excreting organic acids which 
either directly dissolve rock K or chelate silicon 
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ions to bring the K into solution [22]. Silicon (Si) 
removes K deficiency symptoms during salt 
stress and promoted the K absorption by roots in 
many crops including rice [23] 
 

3.1.4 Available zinc in soil 
 

Available zinc content was 0.48 ppm (Table 2) in 
the initial soil sample. At 45 DAS all the 
treatments showed increased available zinc 
content compared to initial. Highest available 
zinc was recorded in T13, RDF + ZnKJJ-4 & 
ZnPGG-1 + SiKPP-1 & SiPYY-3 (0.86 ppm), 
followed by T12 (RDF + ZnPGG-1 + SiPYY-3) i.e., 
0.83 ppm. Available zinc content further 
increased in all the treatments at 90DAS. Higher 
available zinc content was recorded in T13 (1.14 
ppm) at 90 DAS. At 120 DAS available zinc 
content was decreased among the treatments 
over 90 DAS and significantly highest zinc 
availability was recorded in T13 (0.98 ppm), 
followed by T12 (0.96 ppm) (Table 4). 
 

The above results were in agreement with [24] 
where growth and yield parameters of paddy 
showed a significant increase in the treatment 
that received combination of MZSB 6, MZSB 8 
and 75% recommended dose of fertilizer (RDF) 
as compared to control and other treatments. Zn-
solubilizing microbes in the soils of many crops 
were tested as plant growth-promoting factors 
[24,25]. 
 

3.1.5 Available silica in soil 
 

Available silica content was 46.0 ppm in the 
initial soil sample (Table 2). At 45 DAS all the 
treatments showed increased available silica 
content compared to initial stage (Table 4). 
Highest available silica was recorded in T13, RDF 
+ ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3 
(66.8 ppm) followed by T12 (RDF + ZnPGG-1 + 
SiPYY-3) and T11 (RDF + ZnKJJ-4 + SiKPP-1) 
i.e., 65.9 and 65.7 ppm and found on par. All the 
treatments at 90 DAS showed increased 

available silica content than initial and 45 DAS, 
T13 recorded highest (98.90 ppm), followed by T12 

and T11 (97.7 and 97.3 ppm) and were on par. At 
120 DAS available silica content decreased 
among the treatments over 90 DAS and 
significantly highest silica availability was 
recorded in T13 (84.8 ppm), T12 and T11 recorded 
82.6 and 82.4 ppm, respectively (Table 4). 
 

Available silica was observed highest in T13. 
Similar results were observed with [26] where 
application of silica solubilizing bacteria 
increased availability of silica in soil by 12.45 - 
60.15 % more over the control. It might be due to 
the silica solubilizing microorganisms present in 
the soil influenced the available silica content in 
soil by additional application externally. Pedda et 
al. [27] found that maximum grain yield (3622 
kg/ha) was obtained with the application of SSB 
+ FYM followed by FYM (farmyard manure) and 
SSB alone. Rhizobacteria strain CS4-2 
(Burkholderia eburnean) showed the ability to 
solubilize and mobilize the silica and enhance Si-
uptake in rice that improved plant-growth 
relevant to control or uninoculated [28]. 
 

3.2 Influence of Zinc and Silica 
Solubilizing Bacterial Consortia on 
Nutrient Concentration in Plants 

 

3.2.1 Percent nitrogen in plant 
 

Percent nitrogen in plant was influenced by the 
zinc and silica solubilizing bacterial isolates and 
their consortia by easy availability of the 
nutrients. Percent N significantly differed among 
the treatments. Highest nitrogen concentration of 
0.87 %, 1.10 % and 0.98 % was recorded inT13 
(RDF + ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & 
SiPYY-3) followed by T12 (0.87 %, 1.08% and 
0.95%) at 45, 90 and 120DAS, respectively, and 
0.95% in T11 at 120DAS, which were on par. 
Control recorded the least nitrogen of 0.81% 
(Table 5). 

 

Table 2. Initial Physico-chemical and microbiological properties of experimental field soil 
 

Soil and microbial properties Field 

Available N (kg ha-1) 142.03 
Available P (kg ha-1) 26.28 
Available K (kg ha-1) 202.14 
Available Zn (ppm) 0.48 
Available Si (ppm) 46.0 
Total Bacteria (Log CFU g-1 of soil) 8.44 
Fungi (Log CFU g-1 of soil) 4.24 
Actinomycetes (Log CFU g-1 of soil) 5.44 
ZnSB (Log CFU g-1 of soil) 3.78 
SiSB(Log CFU g-1 of soil) 3.46 
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Table 3. Influence of zinc and silica solubilizing bacterial consortia on available soil nutrients, (N, P and K, kg ha-1) in direct sown paddy 
 

Treatments Available nitrogen (kg ha-1) Available phosphorus (kg ha-1) Available potassium (kg ha-1) 

45 DAS 90 DAS 120 DAS 45 DAS 90 DAS 120 DAS 45 DAS 90 DAS 120 DAS 

T1 179.1 218.1 208.2 26.9 48.8 28.7 212.4 330.1 251.4 
T2 181.4 224.9 212.6 28.4 50.1 30.2 213.6 331.8 252.9 
T3 180.7 220.5 210.8 30.5 51.0 31.4 213.4 332.2 253.3 
T4 184.1 230.3 218.6 29.5 52.1 30.6 215.4 333.4 254.2 
T5 182.8 228.5 214.4 30.6 54.0 31.5 215.7 333.5 254.5 
T6 186.6 232.2 221.1 28.8 52.4 30.7 215.8 333.7 255.5 
T7 190.2 248.5 233.2 30.9 56.6 31.8 216.6 334.6 256.1 
T8 190.8 247.1 230.2 31.7 58.5 32.7  217.4 335.7 256.7 
T9 191.5 248.3 232.4 31.0 55.7 32.2 218.1 336.2 257.1 
T10 192.3 250.5 235.6 32.9 58.5 35.3 218.8 338.6 258.4 
T11 194.2 254.8 237.2 33.3 62.4 36.4 220.6 340.8 260.0 
T12 196.7 258.7 238.5 35.4 59.6 38.5 220.9 341.4 261.8 
T13 198.9 262.3 240.2 36.7 64.7 40.6 221.4 349.6 263.5 

SE(m) 2.32 2.50 2.14 1.23 2.04 2.02 1.15 2.12 1.01 
CD(p=0.05) 6.97 7.35 6.43 3.70 6.12 6.06 3.44 6.37 3.04 
CV 3.14 1.80 2.43 4.14 6.34 5.23 3.48 4.13 2.15 

T1: RDF (Control), T2: RDF + ZnSO4, T3: RDF + Calcium silicate, T4: RDF + ZnSO4 + Calcium silicate, T5: RDF + ZnKJJ-4, T6: RDF + ZnPGG-1, T7: RDF + SiKPP-1, 
T8: RDF + SiPYY-3, T9: RDF + ZnKJJ-4 & ZnPGG-1, T10: RDF + SiKPP-1 & SiPYY-3, T11: RDF + ZnKJJ-4 + SiKPP-1, T12: RDF + ZnPGG-1 + SiPYY-3, T13: RDF + 

ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3 
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Table 4. Influence of zinc and silica solubilizing bacterial consortia on available soil micro 
nutrients, Zn and Si (ppm) in direct sown paddy 

 

Treatments Available Zinc (ppm) Available Silica (ppm) 

45 DAS 90 DAS 120 DAS 45 DAS 90 DAS 120 DAS 

T1 0.60 0.91 0.69 57.2 90.1 72.1 
T2 0.61 0.94 0.74 58.4 91.2 74.2 
T3 0.69 0.98 0.79 59.6 92.2 75.2 
T4 0.68 0.97 0.76 60.8 93.3 76.4 
T5 0.67 0.96 0.78 62.2 94.5 78.3 
T6 0.69 0.99 0.79 60.4 93.1 77.2 
T7 0.74 1.02 0.81 62.3 94.7 79.7 
T8 0.76 1.05 0.84 63.4 95.2 80.4 
T9 0.77 1.08 0.86 63.7 95.6 80.6 
T10 0.78 1.09 0.88 64.6 96.4 81.2 
T11 0.81 1.10 0.93 65.7 97.3 82.4 
T12 0.83 1.11 0.96 65.9 97.7 82.6 
T13 0.86 1.14 0.98 66.8 98.9 84.8 

SE(m) 0.00 0.01 0.01 0.63 0.43 0.54 
CD(p=0.05) 0.01 0.03 0.02 1.84 1.28 1.62 
CV 1.43 1.67 1.35 1.74 1.37 1.42 

T1: RDF (Control), T2: RDF + ZnSO4, T3: RDF + Calcium silicate, T4: RDF + ZnSO4 + Calcium silicate, 
T5: RDF + ZnKJJ-4, T6: RDF + ZnPGG-1, T7: RDF + SiKPP-1, T8: RDF + SiPYY-3, T9: RDF + ZnKJJ-4 & 

ZnPGG-1, T10: RDF + SiKPP-1 & SiPYY-3, T11: RDF + ZnKJJ-4 + SiKPP-1, T12: RDF + ZnPGG-1 + SiPYY-3, T13: 
RDF + ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3 

 

Table 5. Influence of zinc and silica solubilizing bacterial consortia on N, P and K 
concentration (%) in direct sown paddy plants 

 

Treatments Nitrogen (%) Phosphorus (%) Potassium (%) 

45 
DAS 

90 
DAS 

120 
DAS 

45 
DAS 

90 
DAS 

120 
DAS 

45 DAS 90 
DAS 

120 
DAS 

T1 0.70 0.93 0.81 0.32 0.53 0.38 1.71 2.10 1.84 
T2 0.71 0.95 0.83 0.35 0.54 0.41 1.73 2.14 1.86 
T3 0.73 0.97 0.84 0.36 0.55 0.44 1.74 2.16 1.85 
T4 0.76 0.98 0.86 0.37 0.56 0.46 1.76 2.17 1.88 
T5 0.77 0.99 0.87 0.38 0.57 0.45 1.78 2.19 1.89 
T6 0.81 1.02 0.93 0.37 0.58 0.47 1.80 2.20 1.90 
T7 0.82 1.03 0.92 0.38 0.60 0.51 1.82 2.23 1.93 
T8 0.83 1.05 0.90 0.40 0.61 0.52 1.81 2.22 1.92 
T9 0.85 1.06 0.93 0.41 0.62 0.54 1.83 2.24 1.94 
T10 0.86 1.07 0.94 0.42 0.62 0.53 1.85 2.26 1.96 
T11 0.85 1.06 0.95 0.43 0.63 0.55 1.84 2.25 1.95 
T12 0.87 1.08 0.96 0.44 0.64 0.56 1.85 2.28 1.96 
T13 0.89 1.10 0.98 0.46 0.67 0.58 1.87 2.29 1.98 
SE(m) 0.01 0.01 0.01 0.00 0.00 0.01 0.02 0.01 0.01 
CD(p=0.05) 0.02 0.02 0.02 0.06 0.01 0.02 0.05 0.02 0.02 
CV 1.15 2.18 1.47 1.85 2.18 1.28 2.55 1.25 1.47 

T1: RDF (Control), T2: RDF + ZnSO4, T3: RDF + Calcium silicate, T4: RDF + ZnSO4 + Calcium silicate, 
T5: RDF + ZnKJJ-4, T6: RDF + ZnPGG-1, T7: RDF + SiKPP-1, T8: RDF + SiPYY-3, T9: RDF + ZnKJJ-4 & 

ZnPGG-1, T10: RDF + SiKPP-1 & SiPYY-3, T11: RDF + ZnKJJ-4 + SiKPP-1, T12: RDF + ZnPGG-1 + SiPYY-3, T13: 
RDF + ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & SiPYY-3 

 

Growth enhancement of inoculated plants could 
be due to the higher N accumulation by                  
bacterial N2 fixation and better root growth, which 
might have promoted the greater uptake                     
of water and nutrients. Similar results were found 
by [29] where addition of SSB-enriched 

biofertilizer to clay substrate significantly 
increased the content of total nitrogen, 
phosphorus and potassium in the leaves of 
Brassica juncea. They concluded that SSB-
enriched biofertilizer improved the photosynthetic 
function of B.juncea. 



 
 
 
 

Babu et al.; J. Adv. Biol. Biotechnol., vol. 27, no. 8, pp. 748-757, 2024; Article no.JABB.119784 
 
 

 
755 

 

3.2.2 Percent phosphorus in plant 
 
Zinc and silica solubilizing bacterial isolates have 
the ability to solubilize P to some extent, these 
microorganisms help for the growth and 
development of the crop and also elevated crop 
tolerance under water deficit condition. At 45 
DAS significant concentration of plant 
phosphorus was found in T13: RDF + ZnKJJ-4 & 
ZnPGG-1 + SiKPP-1 &SiPYY-3 (0.46 %), 
followed by T12 (RDF + ZnPGG-1 + SiPYY-3) i.e., 
0.44 %. At 90 DAS significantly higher plant 
phosphorus concentration was recorded in T13 
(0.67 %). At 120 DAS highest phosphorus 
concentration was obtained in T13 (0.58 %), 
followed by T12 (0.56 %) and T11 (0.55 %) and 
statistically they were on par (Table 5). 
 
Phosphorus (%) was highest in T13 treatment at 
all the intervals studied. Similar findings were 
observed by [30] where zinc solubilizing bacterial 
isolates i.e., Pseudomonas striata along with 
Pseudomonas florescence strains showed 
phosphate solubilizing ability apart from zinc, 
resulted in significant increase in percent of 
phosphorus in plant compared to individual 
inoculations in paddy.Plant growth and 
development improved by Si application under P 
stress. Low concentration of Mn and Fe might be 
responsible for increase of P availability in plant 
under P-deficient conditions [31,32]. 
 
3.2.3 Percent potassium in plant 
 
Osmoregulation is maintained by the potassium 
concentration in the plant. More the 
concentration of potassium,higher the 
osmoregulation, and helps the plant during 
transpiration. At 45 DAS and 90 DAS higher 
plant potassium concentration was obtained in 
T13: RDF + ZnKJJ-4 & ZnPGG-1 + SiKPP-1 & 
SiPYY-3 (1.87 % and 2.29 %), followed by T12: 
RDF + ZnPGG-1 + SiPYY-3 (1.85 % and 2.28 
%), respectively. At 120 DAS significant 
maximum potassium concentration was recorded 
in T13 (1.98 %), followed by T10 (RDF + SiKPP-1 
& SiPYY-3) and T12 (RDF + ZnPGG-1 + SiPYY-
3) i.e., 1.96 % (Table 5). 
 
Present results revealed that a higher value of 
potassium concentration was noticed in 
treatments those received potassium along with 
N or P or combinations at all the growth stages. 
The concentration of potassium decreased 
slowly from 90 to 120 DAS. Besides silicon, 
silicate minerals contain potassium, calcium, 
magnesium, iron and zinc and therefore 

inoculation of Silica solubilizing bacteria (SiSB) to 
soil benefit the crop by releasing several of these 
nutrients [33]. By the action of SSB potassium 
availability was more in soil that showed direct 
impact on the percent potassium in the plant. 
 
Highest availabilityof nutrients at 90DAS in soil or 
rice plant was attributed to panicle initiation stage 
which later declined as maturity occurs with 
transfer of source to sink. 
 

4. CONCLUSION 
 
Nitrogen, phosphorus and potassium are 
essential for crop growth and development in 
paddy whereas zinc and silica nutrients improve 
the grain quality and quantity. Zinc and silica 
solubilizing bacteria and their consortia showed 
significant effect on available nitrogen, 
phosphorus, potassium, zinc and silica in soil as 
well as nitrogen, phosphorus and potassium 
concentration in plant compared to individual zinc 
and silica solubilizing microorganisms. It is 
concluded that exogenous application of 
bacterial consortia can be exploited to improve 
the nutrient status and availability in direct sown 
paddy. 
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