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ABSTRACT
The propagation of dust-acoustic solitary waves in an magnetized collisionless plasma consisting of positive and
negative dust, electrons and ions with Boltzmann distribution are examined. For nonlinear dust acoustic waves
(DAWs), a reductive perturbation method was employed to obtain the Kortewege-de Vries (KdV) equation for the
first-order potential. As the wave amplitude enlarged, the width and velocity of the wave deviate from the prediction
of the KdV equation. Higher order analysis of the perturbed (KdV) equation was used to the fifth-order dispersion

term. The effects of higher-order corrections on dust acoustic solitary structures are studied and discussed.
Keywords: : Dust acoustic waves Kortewege-de Vries (KdV) Equation; Solitary solution.

INTRODUCTION

Dusty plasma is an ionized gas containing
small particles of solid matter which acquire a large
electric charge by collecting electrons and ions from
the plasma, which has been observed widely in
astrophysical plasma and environment, such as
plasmas in inplanetary rings, in circum-solar dust
grains, in the interplanetary medium, in cometary
comae and tails, in asteroid zones, in mesosphere and
magnetosphere, and in interstellar molecular clouds
[1,2]. Because of the involving of the charged dust
grains in plasmas, different types of collective
processes exist and very rich wave modes can be
excited in dusty plasmas such as, DA waves [3,4]
dust ion acoustic (DIA) waves [5,6], dust-lattice (DL)
waves [7,8]. The charging of dust grains occurs due
to a variety of processes [9-11]. Mamun and Shukla
[12] have considered dusty plasma model, which
consists of positive and negative dust only, and have
theoretically investigated the properties of linear and
nonlinear electrostatic waves in such a dusty plasma.
The dusty plasma model of Mamun and Shukla [12]
is only valid if a complete depletion of the
background electrons and ions is possible, and both
positive and negative dust fluids are cold. Recently,
El Wakil [13] investigated theoretically the higher-
order contributions to nonlinear dust-acoustic waves
that propagates in a mesospheric dusty plasma with a
completely depletion of background (electrons and
ions). However, in most space dusty plasma systems
a complete depletion of the background electrons and
ions is not possible [14-17] and the positive dust
component is of finite temperature [18,19]. Later,
Attia et. al. [20] investigated the higher order effects
of positive and negative dust charge fluctuation on
the propagation of dust ion acoustic waves (DIAWs)
in a weakly inhomogeneous, weakly coupled,
collisionless and unmagnetized mesospheric dusty
Plasma consists of four components dusty plasma.

The evolution of small but finite-amplitude
solitary structures in plasma systems, studied by
means of KdV equation, is of considerable interest in
plasma dynamics. These equations derived from
perturbation methods such as the reductive
perturbation theory (RPT) [21]. It was found that the
RPT is based on the small wave amplitude, the first
order solution would underestimate the amplitude of
the soliton by as much as 20%. As the wave
amplitude enlarge, the soliton width and velocity
deviate from the prediction of KdV equation.
Therefore, To overcome this deviation, higher-order
corrections must be taken into account [22-26]. So,
our motive here is to study the effect of the higher-
order dispersion term on the propagation velocity, the
amplitude, and the width in four component plasma.
The organization of the paper is as follows: In
Section 2 we present the basic set of fluid equations
governing our plasma model. Section 3 contains the
nonlinear analysis for [AWs. In Section 4, Higher
order solution is obtained. Finally, discussions and
conclusions are given in Sections 5.

2. BASIC EQUATIONS

Let us consider a homogeneous system of a
magnetized collisionless plasma consisting of a four-
component dusty plasma with massive, micron-sized,
positively, negatively dust grains and nonthermal
elcetron and ion. This study based on the condition
that, the negative dust particles are much more
massive than positive ones [27,28]. The dynamics of
the nonlinear DA waves in the presence of an
external magnetic field B, = € B, of such system
is governed by:
on +V-(nu)=0,
ot
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2.12—p+qu+7qu=0,
4

for Positive dust plasma and
o, V.(Nv)=0
ot
}22
?-FV.VV—V([)-I—(VXQzéX) =0,
t

for negative dust plasma.
Equations (2.1) and (2.2) are supplemented by
Poisson’s equation:

Vip=N-un+pn,—un 23
n, =e’’,

} 24
n, = e”’.

In the above equations » and u are the density and
velocity of positively charged dusty grains while ~
and v are the density and velocity of negatively
charged dusty grains, », and »; are the density of
electrons and ions, ¢ and p are the electric potential
of dust fluid and the thermal pressure of the
positively charged dust fluid, respectively. Here »
and N are normalized by their equilibrium values
n, and N, . u and v are normalized by ¢, = Jovr,
1
p=Zym/Zymy, Vi =(ZkgT;/m)2, Z,(Z,), represents
the number of the positive (negative) charges on the
dust grain surface, m(m,) represents the mass of the
positive (negative) dust particle, kz is the Boltzmann
constant, 7;

» is the temperature of the ions, p is
normalized by nok sl ,since T » 1s the temperature
of the positively charged dust fluid, and ¢ is
normalized by k,T,/e, x is the space variable
1
normalized by A, = (kBTl./47TNOZnez)E,l‘ is the

time variable normalized by

1
a); = (1112/47zNOZ,fez)2 , where oy =(T,/TZ,).

noZ, Meo
oo =(T, /'Tp), /u = ( )’/’le = ( < )’ and
NOZn NOZn
n, .
My = ( ). @ and Q, are the positive and
NOZn

negative charged dust cyclotron frequencies
normalized to plasma frequency.

3. NONLINEAR ANALYSIS

According to the general method of reductive
perturbation theory (RPT), we introduce the slow3)
stretched co-ordinates:

T= E%t,

} 3.1
S =8%(1x+my+Fz—ﬂt)
where ¢ is a small dimensionless expansio
parameter and 1 is the wave speed normalizegs)
by C,. [,mandI are the directional cosines of the

wave vector Kkalong the x,yandzaxis. All
physical quantities appearing in (2.1) are expanded as
power series in & about their equilibrium values as:
n=1+em +$2n2 ++g3n3...,
Uy = EUly] +£2ux2 +6‘3ux3 +.
3 5 H
= 2 2
U, =&MU, +EU,+EU;+..,
3 2 5
= 2 2
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N =1+e&N; +52N2 ++s3N3...,
b (32
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=P +& P, +e P +....
The charge-neutrality condition in the dusty plasma is
always maintained through the relation
l—p+p, —u =0. (3.3)
We impose the boundary conditions that as:
|2 oon=N=1p=1u=v=0,§=0. (3.4
Substituting (3.1) and (3.2) into (2.1)-(2.3) and
equating coefficients of like powers of &. Then,

from the lowest-order equations in &, the following
results are obtained:
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Poisson’s equation gives the llnear dispersion relation
Iu112 IZ
A p-1yo, /12
The next-order of the perturbation gives:
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+m =0,

Oy +v, Oy —/Iavxz -1 0p: _ 0, } (3.9
ot o oc  oc

0
-Q,v, - m%—XEZO, €
og  0g
N Y-
og  0g
mA 0, 4 og

V,,=—5 Vo = — (3.10)
202 o Qo
And for negative dust plasma and Poisson’s equation
gives:
o’ 0’ o’
P —+m’—+I"—)¢,
e e e

1
+5/¢i¢12 +un,
-N, -y, —no, ¢, =0. (3.11)

Eliminate the second order perturbed quantities
n,,U,, N,,v, and @, in equations (3.7-3.11), we
derive the KdV equation;

l 2 2
—— MU0
5 1O &

3
a¢ A¢— a¢1 Bo¢ _ 0, (3.12)
61’ o0& 2 85
where

A=QPAyo, =2 p)puw A + (X p-1yo,)*)

2w~y ~Vyyo * =22 p) - (Pyo, - 2 p)
(1t + 24 (w07 = 1)),
{(3.13)
B =20202Q2¢° ((,12 p-io, ) + 2t yp))*l
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Q@2 4 m? + 02 )-m? R p - 120, ),

Equation (12) adimts the hall-mark soliton solution.

319 19 12
@ = 7%0}121:(5] n:l (3.14)

where 77 is the transformed coordinate with respect

to a frame moving with velocity 4.

4. HIGHER ORDER CORRECTION

As it well know, Equation (3.12) contains the lowest-
order nonlinearity and dispersion. Its validity is
restricted to waves of only small amplitudes.
However, as the wave amplitude ncreases, the width
and velocity of a soliton deviate from the prediction
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of the KdV equation. In order to describe DAWs with
an inlarged amplitude, higher-order effects must be
taken into account. In particular, we add to the well
known KdV equation additional fifth order dispersion
term as a higher-order one,

o, 4400 Ba3¢31+ 565¢51
or %% T e 0%

where O is a smallness parameter. In the case of &

=0, (3.15)

= 0, equation (4.1) reduces identically to the well
known KdV equation (3.12). Due to the secularities
included in the last term of equation (4.1), it could
not be solved exactly, e.g. only trivial solutions
(travelling waves) were found by classical Lie group-
method; for a correct solution we rather have to rely
on a the perturbation method, in which the
secularities embedded in the perturbed term are
separated such that the equations in each order of &
are secular. In the following we introduce another
transformation 77 = & — 97 to recast equation (4.1)

is introduced into
3 5
3d¢1 A¢1 d¢1 Bd¢l+5L¢;
dn dn 2dn’ on

In order to solve equation (4.2), a simple
method constructed by (Watanabe and Jiang 1993)

is introduced for finding a higher-order solitary wave

=0. 4.2)

solutions. Accordingly, expanding ¢1 and 4 as well

with respect to the smallness parameter o,

B =W, + Oy, + 8w, + W+,

b @4.3)
9=39,+84 +6° +5°% +.......,
Substituting equation (4.3) into equation (4.2) and
comparing the coefficients of like power in &, one

arrives at the following numbers of coupled ordinary
differential equations:

3
5’ :—Sodl/lo + Ay, v, +£d l/j;’ =0, (4.42)
dn dn 2 dn
5
5': Ly, =,91%—d "’50, (4.4b)
dn dn
5
5Ly, =9 Wig Wy, i d "L @)
dn dn dny

Yap

where the operator L represents

53:LV/3:19 dl//[)_l_lg d‘//] 19 d'//z Ad(‘//l'//z)_[;'//sz’ (44d)

3

L=-§ i+Al//0 d B d T
'd n dn 2 dn

In fact, this differential operator is the single-
variable version of the linearized KdV operator. To
obtain the solutions, solving equatios (4.4a-4.4d)
successively and subject them to the boundary

4.5)

dy.

conditions  y/; = O(i = 0,1,2,...), Vi _ 0, and
dn

d’y.

WZ’ =0 for 77—t .Equation (4.4a) is
dn
fulfilled by a solitary wave solution of the form
v, = y,sech’(Dn), (4.6)

where the soliton amplitude /, and the soliton
width D" ar

_ 38 _ 2B

and D' —.
0

Note that equation (4.6) is just a single-soliton
solution of the KdV equation.

In the next order of O substituting equation
(4.6) into Equation (4.4b), we obtain :

_1440D°9, 144BD*$
Lt//1=sech“(D77)[ 2 %_ -/ %

m

sech’(Dn)

A2
96D°9, 6D3, 5 j
4

Equation (4.2) is a third-order linear
differential equation associated with inhomogeneous
terms on the right-hand side. The homogeneous

[21601)590 L 216BDS) 54D J
4

+sech’® (Dn) [ tanh(Dn). (4.7)15)

equation, Ly L= 0, satisfying the boundary
conditions, has a solution that is proportional to
Sechz(D n)tanh(D 77). Let us assume here a
solution of the above equation of the form:

w, = psech’ (D) + w,sech* (D) (4.8)

with £ and [, representing constants, which can
readily be proved by re-substitution. Then, it is eas1(ly
to observe that the coefficient of sech’ (D?]) on the
left-hand side cancels out and L, is expressed in
terms of Sech4(D77) and Sech(’(DT]). In that
case, it will be obviously that the coefficient of
sechz(Dn) on the right-hand side should vanish,

j tanh(Dn) +

tanh(Dry)
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which leads to the first order correction of the
velocity

492
B?

The coefficients in equation (4.8) can be
found to constitute the solution:

3092

(4.9)

Y sech’(Dn) +

2
W, = 45];9(2’ sech'(Dn). (4.10)

In order to evaluate next orders of O, we

introduce equations (4.6),(4.7) and (4.10) into (4.4c-
4.4d), and after algebric manipulation we can get,

9 =0,
3
v, = 9092 sech*(Dn) - 13956, -sech*(Dn)
AB
V(411)
139519 sech* (D).
9 =0,
v, = ﬂsech *(Dn)+ wsech *(Dn)
AB°
249,
—%sech‘swn)
b (4.12)

744933
———sech’(Dn).

Finally, combining now equations. (4.6), (4.9),
(4.10), (4.11) and (4.12), we can obtain the solution
of the perturbed KdV equation. This solution are
expressed by power series of lower-order solutions
thus eliminating secularities, that the wave velocity
depends on O only to the first order, while the shape
(profile of potential) of solitary wave depends on all
orders of O .

5 DISCUSSIONS and CONCLUSIONS:

To make the results physically relevant,
numerical calculations were performed referring to
typical dusty plasma parameters as given in Ref.
[29,30]. The effect of p and Vv on the the higher-

order potential amplitude Y/, in Figs.l. It is seen
that the present system supports comprisive solitons.
However, the effect of ), and o 4 on the higher

order solitons amplitude are shown in Fig.2. it is
noticed that, o and V increases the soliton

amplitude but €2, and o, is found to decrease the

soliton amplitude. On the other hand, one of our
motivations was to study the effect of smallness
perturbation parameter & on formation of the
broadband electrostatic noise. For example, Fig. 3
and Fig. 4 Show that, the perturbation parameter &
increases the amplitude and decreases the width of
higher order soliton and the related electric field. In
summary, it has been found that the presence of p

and 0, and & would modify the properties of the

DAWSs and the results presented here should be
helpful for understanding salient features of localized
electrostatic perturbations in space and laboratory
plasma.

Fig. 1. Variation of the higher-order potential amplitude vs. 0O
for O = 0.1 ana € = 0.04. for different values of V.
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Fig.2 Variation of the higher-order potential amplitude vs. Qz
for V = 0.04 ana € = 0.05. Jor different values of O ;.
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Fig.3 Variation of the higher-order potential ¢ vs. 1] for
V= 008, 0 =20.6 and pP= 0.1 for different values
of €.
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Fig.4 Variation of the associated higher-order electric field

structures £ vs. n for v = 008, O = 0.6 for different

values of &.
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