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Introduction

Full-field 3D imaging is causing a revolution in material science 
by allowing microstructures to be imaged directly. In the case of 
non-destructive techniques, the evolution of the microstructure 
can also be followed. Image-processing tools are typically used 
or specifically developed to make quantitative measurements 
from such images. The analytical calculation of the metrolog-
ical properties of image-processing operations is difficult, and a 
given image-based measurement tool typically strings together 
a number of different operations. The metrological behavior of 
such tools is usually characterized by applying it to a number of 
known, representative, artificial scenarios.

In the world of granular physics or geomechanics, spheres 
are pervasively used as a simplified microstructure. Insofar 

as experiments are concerned, glass and steel beads are often 
adopted [1–3]. In numerical simulations, sphere-like particles 
are deep within the huge emergence of the ‘Discrete Element 
Method’: particle-based simulations based on molecular 
dynamics, where the fundamental unit is a sphere (see [4] and 
thousands of citing articles). Spheres are also favored repre-
sentations of particles in analytical developments, where their 
simplicity allows for closed form solutions for a number of phe-
nomena and grain-assembly properties (e.g. capillary bridges 
[5], contact indentation [6], solid volume fraction [7], packing 
stiffness [8]). It is important not to forget that outside the 
mechanics of particulate media, the microstructure defined by 
a series of spheres is typically a dual of that defined by a foam.

A full-field 3D density image (e.g. one coming from x-ray 
tomography) of a sphere suspended in air will in an ideal case 
measure the sphere’s density in the voxels inside the sphere 
and the air’s density away from the sphere. For the voxels that 
fall on the interface between sphere and air, some interme-
diate value—proportional to the ratio of the partial occupancy 
of each phase within the voxel—will be measured. This effect 
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is typically known as the ‘partial volume effect’ and is illus-
trated in the top right of figure 1. The accurate reproduction 
of this boundary-effect is essential when generating synthetic 
spheres, especially when one is interested in the character-
istics of the boundary of the particle (inter-particle contacts, 
interface with another phase, etc.)

The calculation of the ‘grayscale’ value of partially-occu-
pied voxels on the boundary of a sphere is not trivial, and can 
intuitively be handled by subdividing a voxel and calculating 
whether each part of this subdivided voxel is inside or outside 
the sphere. This ‘brute-force’ approach may be acceptable 
in some preliminary studies, but where good metrological 
quality is required (such as a precise center of mass, or a pre-
cise total mass), the number of voxel subdivisions required 
amounts to an enormous computational cost.

In part 1 of this paper we present an analytical (and there-
fore fast and accurate) solution to this problem, directly giving 
the grayscale value of each voxel—this allows ‘perfect’ 
spheres to be generated, providing a ground truth.

In part 2 of this paper, we very briefly discuss some exam-
ples of current uses of this tool for metrological measurements.

In part 3 we present in detail a technically advanced appli-
cation, where the synthetic spheres are guided onto a real, 
noisy 3D image by 3D template matching in order to charac-
terize the (imperfect) spheres therein. This also allows them to 
be ‘removed’ (i.e. subtracted) from the image, which in turn 
allows a better identification of the remaining phases (e.g. 
water, cement) surrounding them.

Both the codes used to generate the spheres and to iden-
tify and describe spheres in 3D images are made available at 
https://forge.3sr-grenoble.fr/repos/kalisphera/. At the time of 
writing a Python version is available and a C++ one is under 
construction; their use is illustrated through working examples.

1. Kalisphera, an analytical tool to generate correct 
3D images of spheres

A three-dimensional raster image of a sphere is made up of 
voxels which can be put into one of three categories: voxels 
wholly inside the sphere (typically given a value of one), 
voxels wholly outside the sphere (typically given a value of 

Figure 1. Examples of the use of spheres in experimental mechanics, justifying the need for a proper treatment of partial volume 
effect. Top row: Rendering of an x-ray tomography image of a typical experimental specimen made of spheres, each necessarily imaged 
with partial volume effect (top right). Bottom row: 2D slices from such images, showing different problems where spheres are used in 
experimental practice.
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zero) and voxels on the boundary of the two (with a value 
between one and zero), as shown in the voxel, top right in 
figure 1. The value of voxels on the boundary is a direct ratio 
of the (unit) volume of the voxel and the volume of the sphere 
within the same voxel, and consequently this phenomenon is 
named ‘partial volume effect’ and is found in all x-ray tomo-
graphic images of heterogeneous materials.

A simple approach to determine the value of these voxels 
is to subdivide each voxel into, for example, a thousand 
subvoxels ( × ×10 10 10) and determine for each subvoxel, 
whether it is inside or outside the sphere; summing the number 
of subvoxels within the sphere and dividing by the number 
of subvoxels gives the voxel’s value. The accuracy of this 
measurement is obviously directly related to the number of 
subdivisions and, for reasonable accuracy, the number of com-
putations for each border-voxel starts to become very large.

The proposed approach circumvents this problem by ana-
lytically solving the intersection of a sphere with a voxel 
(i.e. a cube). For the scope of this study, we are interested 

in spheres that can circumscribe a voxel (i.e. ⩾ ( )R L 3 /2, 
where L is the size of the voxel and R the radius of the sphere). 
A classification of the different possible intersections, based 
on the number of cube corners within the sphere, is presented 
in figure 2. For each case there corresponds a different for-
mulation of the integral defining the volume of intersection, 
as shown in table 1, where the analytic solution functions Si’s 
are defined in table 2. The choice of the orientation of the axes 
in figure 2 and in the corresponding table, is entirely arbitrary 
and any partial volume effect voxel can be reoriented to have 
its axes coincide with the ones in the figure.

To build then a correct 3D image of a sphere it is sufficient to 
classify each voxel in one of the classes and determine its value. 
A script built for this very purpose by the authors is publicly 
accessible at https://forge.3sr-grenoble.fr/repos/kalisphera/. 
The software takes as an input the sphere size and position 
within a box as well as the Gaussian blur (covered later).

With this approach the speed to produce a sphere increases 
by several orders of magnitude. For example, a single sphere 

Figure 2. Possible intersections between a sphere and an inscribable cube, classified based on the number of corners of the cube contained 
in the sphere. The orientation of the axes, and letters used, are the ones adopted in table 1.
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Table 1. Definitions and solutions of the intersections between a sphere and an inscribable cube as per classification in figure 2.
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(Continued)
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with a radius of 12 pixels, like the ones used in section 2, can 
be produced with the available Python version of kalisphera in 
about one second on a single 2.2 Ghz CPU. This is to be com-
pared to the four hours needed with the brute force approach, 
by subdividing each partial volume voxel into 50  ×  50  ×  50 
subvoxels, which still yields an error of 1% on the volume.

An image containing multiple spheres can be generated 
adding images of individual spheres with identical box size, 

taking the background (void) grayvalue to be equal to zero. 
Both the background and the sphere grayvalues can then be 
set to the desired values.

2. Uses for metrology

The kalisphera analytical tool described above generates 
a single 3D image of a sphere as it would be captured by a 

8 ∫ ∫ ∫ x y zd d d
Z

Z

Y

Y

X

X

A

G

A

G

A

G 1

a see table 2.
Note: The axes and points letters adopted above are respectful of the definitions in such figure. The fundamental solutions, marked by the symbol ‘ a’, are 
listed in table 2.

Table 1. (Continued)

Case Problem Solution

Table 2. Definitions of the fundamental solutions used in table 1.
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perfect imaging system. As stated in the introduction, this can 
offer a ground truth for many different types of image-based 
measurements of microstructure. For example, at the time of 
writing, this tool is being used to make multiple realizations 
of 3D spheres in order to investigate two metrological proper-
ties of the measurement of contacts between particles (with 
specific and direct applications to measurements of fabric in 
granular materials such as sand):

 (1) To investigate the sensitivity of contact detection tech-
niques when a physically-correct threshold (i.e. one that 
selects the physically correct volume) is chosen.

 (2) To test the precision of a 3D level-sets surface con-
vergence to the boundary of a grain in the presence of 
contacting grains, imaging noise, and blur.

These specific metrological applications will not be dis-
cussed in more depth for sake of brevity, and will be the object 
of subsequent publications. In general, the idea of releasing this 
tool publicly is to encourage widespread use of correct spheres 
for testing image-based measurements (of microstructure etc).

The next section  will develop an advanced example of 
the potential applications of this code, employing it to make 
measurements, based on the hypothesis that a scanned image 
contains spheres.

3. Identification and subtraction of spheres in 3D 
images

This section  introduces a kalisphera-based technique for 
sphere-matching in real 3D images of spheres. The original 
objective of this technique was to accurately characterize 
spheres in 3D images of three-phase media (in this case 
grains-cement-air but also grain-water-air is an immediate 
possibility) to subtract the sphere from the image including 
its partial volume effect to be left with an easy-to-quantify 
map of cement (or water) and air—particularly close to the 
contact, where cementation (or the occurrence of a liquid 
bridge) is especially important for the mechanics of granular 
media. This section will first introduce a general framework 
for sphere matching, then discuss its application to real 
images.

3.1. Ideal sphere-matching

The problem of the identification and geometrical descrip-
tion of spheres in an image, given their analytical descrip-
tion, can be classified as a template matching problem [9], 
although other techniques such as the Hough transform [10] 
are also applicable. A commonly adopted approach for this 
kind of problem is to maximize a measure of the similarity of 
a reference image (typically a subset) to an image-template 
which can be varied to match. The cross correlation between 
the two images provides a simple yet robust measure of simi-
larity. This measure is often normalized by the mean intensity 
of the figure  to account for the possibility of non-homoge-
neous brightness, to obtain a measure named normalized cross 

correlation coefficient (NCC). For two 3D images it is typi-
cally defined as:

( )

=
∑ ( ) ( + + + )

∑ ( ) ∑ ( + + + )

NCC u w w

I x y z I x u y v z w

I x y z I x u y v z w

, ,

, , , ,

, , , ,
,

x y z

x y z x y x

, , 1 2

, , 1
2

, , 2
2

 
(1)

where ( )I x y z, ,1  and ( )I x y z, ,2  are the grayscale values of the 
voxel of coordinates ( )x y z, ,  for the image subset and the tem-
plate respectively, while u, v, z are the integer displacements 
of the template sphere in the x,y and z directions respectively. 
Written in this form, the NCC value is 1 for two identical 
images.

Different techniques are typically adopted to interpolate 
this coefficient to obtain sub-pixel (-voxel) accuracy, but in 
our case it is possible to simply generate a new template with 
subpixel displacement. It also straightforward to vary the 
radius of the sphere. For the problem at hand the potential can 
therefore be rewritten as:

( )

=
∑ ( ) ( )

∑ ( ) ∑ ( )

NCC X Y Z R

I x y z S x y z X Y Z R

I x y z S x y z X Y Z R

, , ,

, , , , , , , ,

, , , , , , , ,
,

c c c

x y z c c c

x y z x y x c c c

, , 1

, , 1
2

, ,
2

 (2)

where S is the raster image of the sphere, X Y Z, ,c c c are the 
coordinates of its center, and R is its radius.

Figure 3(a) shows the evolution of −1 NCC (so that a value 
of zero means a perfect match), using as a reference image 
a single kalisphera sphere with a radius of 12 pixels, and 
varying the radius and position of the matching sphere (the 

− −x y z direction displacements generate identical curves). 
When using the same position and radius as the reference 
image, it is encouraging that the calculated −1 NCC is exactly 
zero (perfect match). Both the variation in displacement and 
in radius generate smooth, monotonous potentials down to the 
desired value. The effect on the NCC of the positional error is 
symmetrical (as could be expected), unlike the radius where 
the intersecting volumes are different for an undersized or 
oversized matching sphere.

Figure 3(a) shows clearly that even starting from template 
with a poor guess of sphere center and radius, it is possible 
(by iteratively optimizing the −1 NCC) to converge to the 
exact match. While the function is not convex, it does not 
present other stable minima than the correct position and 
size, as it can be observed from the plot of the full landscape 
in figure  3(b). Furthermore, the smoothness and increasing 
slope towards the exact match make this a function par-
ticularly well suited for gradient-sensitive minimization 
algorithms. For this work a Broyden—Fletcher—Goldfarb—
Shanno algorithm [11] was used (more specifically the one 
implemented in scipy [12]). While this optimization algo-
rithm is not ideal for non-convex functions, the minimized 
function is convex relatively close to the global minimum. 
Alternative optimization algorithms are pre-implemented 
in the code provided, at the discretion of the user. Typical 
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convergence curves are shown in figure 4. Here, starting from 
increasingly inaccurate guesses, the optimization procedure 
allows the estimation of the center of the sphere to converge 
with the actual value. We remark that the ordinate axis in the 
figure is logarithmic and that the lower limit of −10 2 (pixels) 
coincides with the initial optimization step adopted. This was 
chosen as a trade off between the desired accuracy and the 
speed of convergence. For accuracies significantly below one 
100th of a pixel, several more steps are required, possibly 
because of the noise induced by the numerical truncation of 
the analytical solutions.

It is evident from this image that, while the proposed tech-
nique allows the detection and characterization of spheres 
starting from virtually no prior knowledge of the image (in 
the uppermost case, the reference sphere and the template one 
do not touch), the process is considerably sped up by even 
rough guesses of these features. Unlike the accurate measures 
the proposed technique aims to provide, rough estimates are 
usually easy to obtain. For example it is possible to segment 
the image and determine the center of mass and volume of the 
objects therein. In some works (e.g. [13]) template matching 
is performed in the transform domain, although in this context 
its computational cost is comparably low.

3.2. Matching spheres in real images

To apply the sphere-matching technique outlined above to real 
images of particles from x-ray tomography, the tool must be 
able to converge in the presence of the complications of real 
images: the three following crucial factors are explored:

 (1) Presence of other, touching, spheres
 (2) Image quality (random noise, and blur from the imaging 

system’s point spread function)
 (3) Imperfections in the geometry of the real spheres (asphe-

ricity)

3.2.1. Presence of other spheres. As mentioned above, the 
aim of this application is the characterization of spheres in 
a real image (e.g. for contact detection or to remove spheres 
from an image to facilitate segmentation in multi-phase mate-
rials). The obvious interest is to apply this to an image of a 

microstructure composed of many particles. The presence of 
other particles in contact with the particle of interest (the one 
on which it is trying to converge) will disturb the relatively 
perfect matching profile shown in figure 3(a). This is shown 
in figure 5, where the −1 NCC profile for one template sphere 
( =R 12 px) being moved from left to right is reported for dif-
ferent configurations of contacting spheres.

The effect of contacts above and below the scanning direc-
tion is minimal (solid black and dashed azure lines), since 
the only disturbance is in the pixels shared at the contact. 
However, this disturbance means that −1 NCC never reaches 
zero. The effect of other particles on the path of the scan-
ning direction (red dotted line—blue dash-dotted line) is 
significant: the occurrence of two additional local minima in 
front of and behind the central particle corresponding to the 
centers of the surrounding particles. The convergence on the 
desired center occurs if the initial guess is less than a radius 
away while the accuracy of the optimization is essentially 
unaffected.

The match profile for the variation of the template’s radius 
in figure 6 (solid black line) shows that a false, local minimum 
is provoked when the radius of the template is large enough 

Figure 3. Match profiles showing variation in correlation (NCC) of two spheres as the position and the radius are varied for the template 
sphere: (a) individual curves and (b) 2D energy landscape.
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Figure 4. Typical results of the convergence of the sphere 
position to the correct value with the iterations of the optimization 
algorithm, starting from different initial hypotheses.
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to contain part of the surrounding particles1. This means that 
achieving convergence on a particle of interest when trying to 
optimize the variable of the radius is feasible only where the 
initial value of the radius is close to the real one2.

In order to overcome this difficulty, the comparison of the 
template and the subset of the reference image are changed in 
order to take the boundary of the grains into account. There 
are a number of means of achieving this through edge detec-
tion operators such as Gaussian, Laplacian, and Sobel func-
tions, and in this case we adopt a variance filter. This means 
that in the computation of the NCC instead of comparing the 
two original images, compares two variance filtered images3. 

This yields a single minimum of 1–NCC, as shown in the 
dashed red line in figure  6. The use of the variance also 
has the advantage of accelerating the convergence process 
while maintaining the accuracy of the measure unaltered. 
Nonetheless, the adoption of this operator increases the sensi-
tivity of the technique to noise, as detailed in the next section.

3.2.2. Image quality. Several categories of defects and arte-
facts can occur in x-ray images (e.g. beam hardening, ring 
artefacts [14]), and a vast and expanding literature aims at 
their mitigation. In this section we are interested in the effect 
on the technique of two of the most persistent ones: blurring 
and random noise, although all the tests on real data include 
ring artefacts and beam hardening which have been compen-
sated for as much as possible in pre-processing.

Blurring. Blurring can be interpreted as the result of the convolu-
tion of the ideal image with the point spread function of the optical 
system. While methods to deconvolve the image and reduce the 
blur have been proposed, they often require accounting for numer-
ous features and settings of the imaging system. Instead, in this 
technique we choose to accept the image as-is and to reproduce 
the inherent blur on the matching template. The point spread func-
tion is approximated by a Gaussian blur operator applied on the 
generated spheres. The standard deviation of the Gaussian blur 
is another parameter (along with the sphere position and radius) 
that can be optimized, although in practice it has been found (as 
expected) to be constant for a 3D x-ray tomography image.

Random noise. To assess the effect of noise on the accuracy 
of the technique, random noise with Gaussian distribution of 
the intensity was added to each voxel of the image. To describe 
the level of noise in images a commonly adopted measure is 
the signal to noise ratio, defined as:

μ
σ

=SNR ,i

n
 (3)

Figure 5. Match profiles for different contact configurations, highlighting the robustness of the approach in the determination of a sphere’s 
position.

Figure 6. Radial intensity profiles for a sphere surrounded by 6 
spheres. The potential has a spurious minimum when the radius 
incorporates the surrounding spheres. The application of an edge 
detecting filter (variance) eliminates the spurious minimum while 
maintaining the accuracy of the approach unaltered.

1 The NCC in figure 6 is computed on a box of fixed size and large enough 
to contain all the spheres, in order to isolate the effect of the sphere radius 
and remove that of the box size from the figure. This justifies the difference 
with the values in figures 3 and 5. Using a box with increasing size yields 
a qualitatively analogous result, and the values of the minima get closer 
together.
2 For sphere packings with a narrow range of radii (low dispersity or 
monodisperse packings) this may not be an insurmountable problem as it is 
sufficient to restrict the range of the radius.

3 Since variance values of an image can be very large over a border, it has 
been necessary to pass the calculation of the NCC into 8-byte (64-bit) floats 
for a correct computation.
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where μi is the mean gray value of the image and σn the stan-
dard deviation of the background. In experimental mechanics 
images with <SNR 10 are rarely accepted. As shown in 
figure 7(a) for SNR levels typical in x-ray images, the noise 
does not affect the accuracy of the technique and only margin-
ally reduces the convergence speed when the original image 
is processed. Unsurprisingly, edge-sensitive operators as the 
variance filter are more strongly affected by noise, as shown 
in figure 7(b). At ⩽SNR 5 this filter can generate local minima 
far from the actual value, rendering the optimization process 
more difficult. The use of the variance filter is therefore a trade 
off between the removal of spurious minima in polydisperse 
samples (and accelerated convergence) and the increased sen-
sitivity to noise. Its adoption should be functional to the type 
of sample (i.e. level of polydispersity and accuracy of the ini-
tial guess) and to the SNR of the images at hand. An hybrid of 
the two techniques can also be imagined, taking advantage of 
the variance filter to approach the solution, followed by fur-
ther steps on the original image.

3.2.3. Non-sphericity of particles. While techniques to 
produce spheres with deviations from the theoretical radius 
smaller than −10 7 of R are known [15], most commercial 

grade spheres have a range of asphericity of ± [0.07–2.5] μm. 
Assessing the implications of these imperfections on the accu-
racy of the predictions of the technique is of course pivotal to 
any serious metrological study. To simulate the imperfections 
of the spheres, ellipsoids of revolution were numerically gen-
erated with a technique analogous to that described as ‘brute 
force’ in section 1, subdividing each partial volume voxel into 
503 subvoxels. The asphericity can be defined as = −As c a 
where c and a are the major and minor radii, respectively, as 
sketched in figure 8(a).

The matching profile for the template’s position along 
the major radius in figure 8 shows an area of essentially flat 
NCC in the proximity of the center of the sphere. This hin-
ders the convergence, often leading to estimation errors. This 
area of uncertainty is of the same size as the asphericity and 
both in the original and variance filtered image, as shown in 
figure 8(b). In both cases, the radial intensity profile can be 
shown to have a unique minimum around ( + + )a b c /3.

3.3. Validation on real images

In this section  the performance of the kalisphera sphere-
matching tool developed above is evaluated on two real images 

Figure 7. Effect of the noise on −1 NCC, for (a) unaltered image and (b) variance filtered image. For typical values ( <SNR 10) the 
accuracy of the method is unaffected and the convergence speed only marginally reduced in both cases.

(a) (b)

Figure 8. Effect of asphericity on the cross correlation potential, for (a) unaltered image with increasing degrees of asphericity ‘As’ and  
(b) comparison between original and variance filtered image.

(a) (b)
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of a sphere packing. The two 3D images are x-ray tomogra-
phies acquired on the laboratory scanner in Laboratoire 3SR 
(Grenoble) of a packing composed of a few thousand sapphire 
spheres (of three different radii—400, 300 and 250 μm) pur-
chased from Sandoz Fils S.A., with a tolerance on the diam-
eter of ±1.25 μm, and imaged at a pixel size of 8.7 μm/pixel. 
This microstructure is imaged in two different configurations 
differing by just a rigid-body displacement of the microstruc-
ture. This means that the displacement of each grain between 
the images is identical.

Initial guesses are obtained by thresholding, separating 
(with a 3D watershed) and tracking the grains between 
images with ID-Track [16]. From these initial guesses spheres 
are matched using, in this case, six iterations of the BFGS 
algorithm (generating kalisphera spheres with the measured 
average pore value in the image and the sphere’s specific gray 
value4) and using these images with representative grayvalues 
to calculate the variance. Each iteration step takes roughly 
twice the time needed to generate a single sphere (detailed 
in section 1) multiplied by the number of axes on which the 
optimization is run (i.e. x, y, z, R), plus one. As stated above, 
the Gaussian blur applied to the kalisphera spheres is fixed, 
in this case to a standard deviation of 0.81 pixels, based on 
some initial iterations. In the assumed, ideal case of no sphere 
rearrangement between the two imaged steps, the measured 
distribution of displacement is a Dirac delta function.

Figure 9 shows, in solid black, the displacement of the 
centers of the spheres obtained with the kalisphera sphere-
matching tool, which shows a tight distribution around a dis-
placement of 59.55 pixels (note that the entire extent of the 
x-axis in figure 9 is 1.5 pixels). Practically all the measured 
displacements fall within 0.3 pixels of the mean: the Gaussian 
fit of their distribution (dashed red) has a standard deviation 
of 0.1 pixels meaning that at σ±3 , 99.7% of the measurements 
are within 0.3 pixels. The asphericity of the spheres used is ±
1.25 μm on the diameter, meaning ±0.15 pixels at this reso-
lution. Assuming that the asphericity of the real spheres can 

be modelled as elliptical, the considerations in section 3.2.3 
would imply that expected prediction errors due to asphericity 
are in the same same order as the observed ones and therefore 
that the majority of the error in the positions measured (which 
are incurred twice for the measurement of displacements) can 
largely be justified by the physical sphericity of the spheres 
tested5 rather than by the quality of the kalisphera-based tem-
plate matching technique. For completeness, figure  9 also 
reports, in dot-dashed blue, the distribution of displacement 
obtained using ID-Track (where the centers of the grains are 
obtained by the centers of mass of the separated objects), 
which gives comparable results for the quality of spheres used. 
Further tests show that when purposely ‘throwing off’ the ini-
tial guess values by a few pixels, the position of the spheres’s 
centers obtained from the template matching is unaffected.

A multi-core implementation of this template matching 
procedure with working examples is also provided by the 
authors at the code repository given above.

3.4. Applications of kalisphera sphere-matching

Satisfied with the behavior of the kalisphera sphere-matching 
tool tested on real images in section  3.3, this technique is 
applied in this section  to two cases of real geomechanics 
experiments with x-ray tomography. The first case is the 
study of calcite cementation between glass spheres, where a 
large number of spheres has been purposefully imaged at a 
relatively low resolution, with the objective of having a more 
mechanically representative specimen, in order to be able to 
make a micro-mechanical validation of recent work [17, 18]. 
The low number of pixels across a diameter of the spheres in 
this case, means that the partial volume voxels make up an 
important part of the total number of voxels for each sphere 
(see figure 10, top row), meaning that thresholding the grains, 
or the cement, will induce significant errors on the boundary.

As the top row of figure 10 shows, in the presence of sig-
nificant noise, and blur, the kalisphera sphere-matching con-
verges well (middle image). When the contribution of each 
sphere’s graylevel above that of the air is subtracted from the 
original input data (rightmost image), what is left behind is a 
cement distribution which is much easier to quantify, since 
spheres have been subtracted with their partial volume pixels 
leaving behind just cement and air (which can be quantified 
for example with a simple histogram-based threshold).

The bottom row of figure  10 shows another application 
with a partially-wet granular medium, from the work of 
[19]. As is visible from the images, there are more pixels for 
a sphere diameter in this case. The challenge in this case is 
essentially the same as above, with the added complication 
that the contrast between the air and water in these images is 
relatively low. A recurring problem in the quantitative analysis 
of multi-phase images such as these is the categorization of 
each pixel as belonging to grain, water, or air (i.e. the trinari-
zation of the image). This is often problematic at the boundary 
between the densest (grain) and least dense phase (air), since 

5 Spheres with a better sphericity are available from the aforementioned 
manufacturer.

Figure 9. Distribution of the displacements evaluated through 
kalisphera between two scans of a sphere packing undergoing a 
rigid displacement.

4 Obtained as a mean of the voxels contained in the initial sphere guess 
eroded by one pixel.
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the partial voxels have the same grayvalue as the intermediate 
phase (e.g. water, cement). As shown in figure 10 the proposed 
method allows these voxels to be distinguished and therefore 
correctly categorized.

4. Conclusions

In this contribution we present a novel technique to produce 
3D images of spheres analytically describing their partial 
volume effect as the solution of the possible intersections 
between a cube (representing a voxel) and a sphere. This tech-
nique is named kalisphera, and is expected to be of significant 
use for the creation of realistic, controlled images of simpli-
fied microstructures to test 3D image measurements tools on.

A sophisticated kalisphera-based sphere matching tool 
is also presented, based on the optimisation of a correlation 
potential allowing rapid convergence on ideal spheres with 
resolutions verified down to −10 2 px. The analytical solution 
has proven necessary to achieve the desired accuracy and 
speed. The effect of the most common experimental imper-
fections of real-world imaging on the technique is quanti-
fied and the technique is enhanced for better performance on 
polydisperse materials. The overall reliability of the technique 

is tested against real x-ray tomography experimental data. 
Finally, the use of this tool is illustrated on two different 
domains of geomechanics, where the removal of the spheres 
constituting the granular skeleton simplifies the identification 
of the remaining phases (cement and water in the examples).

Work is ongoing to improve the technique: the certainty 
of the sphere impenetrability restricts the possible positions 
of the spheres. Its implementation in the minimization of the 
cross correlation potential would prevent erroneous overlaps 
and enhance the accuracy of the estimations. Extension to 
other geometrical shapes is under evaluation, currently with 
the main aim of reducing the effect of sphere imperfections 
on the accuracy of the method. From a coding viewpoint, a 
Python version is currently available in the repository pro-
vided above and an optimized C-code is under development.
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