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Background: Mitochondria are significant both for cellular energy production

and reactive oxygen/nitrogen species formation. However, the significant

functions of mitochondrial genes related to oxidative stress (MTGs-OS) in

pancreatic cancer (PC) and pancreatic neuroendocrine tumor (PNET) are yet

to be investigated integrally. Therefore, in pan-cancer, particularly PC and PNET,

a thorough assessment of the MTGs-OS is required.

Methods: Expression patterns, prognostic significance, mutation data,

methylation rates, and pathway-regulation interactions were studied to

comprehensively elucidate the involvement of MTGs-OS in pan-cancer. Next,

we separated the 930 PC and 226 PNET patients into 3 clusters according to

MTGs-OS expression and MTGs-OS scores. LASSO regression analysis was

utilized to construct a novel prognostic model for PC. qRT-PCR(Quantitative

real-time PCR) experiments were performed to verify the expression levels of

model genes.

Results: The subtype associated with the poorest prognosis and lowerest MTGs-

OS scores was Cluster 3, which could demonstrate the vital function of MTGs-OS

for the pathophysiological processes of PC. The three clusters displayed distinct

variations in the expression of conventional cancer-associated genes and the
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infiltration of immune cells. Similar molecular heterogeneity was observed in

patients with PNET. PNET patients with S1 and S2 subtypes also showed distinct

MTGs-OS scores. Given the important function of MTGs-OS in PC, a novel and

robust MTGs-related prognostic signature (MTGs-RPS) was established and

identified for predicting clinical outcomes for PC accurately. Patients with PC

were separated into the training, internal validation, and external validation

datasets at random; the expression profile of MTGs-OS was used to classify

patients into high-risk (poor prognosis) or low-risk (good prognosis) categories.

The variations in the tumor immune microenvironment may account for the

better prognoses observed in high-risk individuals relative to low-risk ones.

Conclusions: Overall, our study for the first time identified and validated eleven

MTGs-OS remarkably linked to the progression of PC and PNET, and elaborated

the biological function and prognostic value of MTGs-OS. Most importantly, we

established a novel protocol for the prognostic evaluation and individualized

treatment for patients with PC.
KEYWORDS
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1 Introduction

Pancreatic cancer (PC) is one of the most prevalent types of

malignancies that may develop in the digestive system and is the

major contributor to cancer-associated deaths globally. Pancreatic

neuroendocrine tumor (PNET) is a heterogeneous tumor

originating from neuroendocrine system pluripotent stem cells. In

the last 25 years, the cases of PC have increased by more than

doubled (1). At this time, the incorporation of major surgery during

the early stages of the disease is the most successful therapy for

people who have PC and PNET. Over 80% of patients could not be

identified at an early phase since there was a lacking of prominent

early diagnostic signs and biological markers. During diagnosis, the

majority of patients with PC are already in the terminal phase with

distant metastases, which results in a loss of ideal prospects for

surgery (2, 3). Furthermore, postoperatively, around 80% of

individuals with PC often develop metastasis and experience

disease recurrence (4). Notwithstanding the significant

advancements in treatment methods, people diagnosed with PC

continue to have a dismal prognosis worldwide (5). Hence,

chemotherapy sensitivity for PC is still a challenge that has to be

overcome. It is urgent warrant to establish an innovative and precise

model for prognosis prediction in PC and PNET individuals.

Mitochondria acted as metabolic hubs at the cellular and tissue

level, which were significant both for cellular energy production and

reactive oxygen/nitrogen species (ROS/RNS) formation (6).

Mitochondrial dysfunction (MDF) could produce mitochondrial

reactive oxygen species (mtROS), which performs an instrumental

function in diabetes mellitus, cancer, neurodegenerative diseases,

and hydrocephaly (6, 7). The mtROS could activate signaling

cascades that modify the expression of genes and influence cell
02
activation, proliferation, and differentiation (8). Oxidative stress

(OS) is an imbalance between the production of ROS/RNS and

antioxidant protection effect, which is considered to be involved in

varieties of disorders including DNA damage and repair (DDR)

related diseases and neoplasm (9). Notably, the mitochondrial

respiratory chain is the primary contributor to intracellular ROS

and performs a fundamental function in modulating cellular redox

homeostasis (10). Therefore, MDF could disrupt the normal

functional activities of cells by increasing intracellular ROS (11).

An overabundance of ROS will promote the oxidation of protein

DNA and lipid macromolecules, resulting in genomic instability

and further promoting transformation. Consequently, elevating

ROS might promote the occurrence of tumors. Nevertheless,

some research reports suggest increasing oxidative damage and

enhancing ROS-dependent death signals might also be effective in

preventing certain steps of tumorigenesis (12–14). Although

oxidative stress-mediated alterations in mitochondria contribute

significantly to tumorigenesis, their causative relationship is still up

for debate (14). In addition, research has shown the molecular

features of mitochondrial genes related to oxidative stress (MTGs-

OS) and reported their predictive function in clear cell renal cell

carcinoma (15). Based on the above analysis, we included MTGs-

OS in this research. Moreover, no correlation between MTGs-OS

and clinical outcomes or chemotherapy response has been reported

in PC. Hence, the research exploring the expression patterns of

MTGs-OS and constructing MTGs-OS molecular subtypes

is promising.

In the study, PC patients’ prognoses were closely correlated with

56 MTGs-OS that were confirmed to be substantially upregulated in

the disease. Next, we conducted a thorough analysis of the MTGs-

OS expression profiles and genetic alterations across various
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cancers. We grouped PC and PNET patients into three clusters as

per MTGs-OS scores and MTGs-OS expression and evaluated the

correlations between these clusters and prognosis, immune

microenvironments, and drug sensitivities. Furthermore, we

developed and extensively validated a new and independent

prognostic model using MTGs-OS. The approach has the

potential to shed light on the mechanisms behind PC and PNET,

leading to more targeted therapy and better clinical results for PC

and PNET patients.
2 Methods

2.1 Data collection and processing

We downloaded the transcriptomic and corresponding clinical

data of PC patients from the following four omics-related platforms:

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/),

ArrayExpress, Gene Expression Omnibus (GEO, https://

www.ncbi.nlm.nih.gov/geo/), and International Cancer Genome

Consortium (ICGC, https://dcc.icgc.org/) databases. In this

analysis, only PC patients who had full follow-up data were

included. Data from RNA seq (values expressed as FPKM) were

translated into TPM for the TCGA-PC cohort to make them more

similar to microarray results. To avoid the batch effect, we use the

ComBat function in the SVA package to correct the data from

different platforms (41). Overall, we complied the expression profile

and clinical information of 930 PC patients consisting of TCGA-

PC, GSE62452, GSE28735, GSE57495, ICGC-AU, ICGC-CA, and

MTAB-6134 datasets (16–19).

We also downloaded and complied the transcriptomic data of

PNET patients from the following three cohorts: GSE73338,

GSE98894, and ICGC-PAEN-AU cohorts (20). Similar de-batch

technologies were also employed to correct the data from different

platforms. Overall, a total of 226 patients with PNET were obtained

for the subsequent analysis.

Subsequently, 1136 MTGs were obtained from the

MitoCarta3.0 database (http://www.broadinstitute.org/mitocarta),

and using the query “oxidative stress,” the GeneCard database

(https://www.genecards.org/) provided information on 9512

human genes associated with OS. Finally, 469 MTGs-OS were

preserved for further analysis after taking the intersection.
2.2 Identification and validation of
differentially expressed MTGs-OS
associated with PC prognosis

Overall, 178 PC and 171 normal pancreas tissues in the GTEx

and TCGA cohorts were obtained for performing differential

expression analysis. Subsequently, prognosis-related analysis was

conducted on 930 PC samples with complete follow-up records.

The ‘limma’ tool in R was employed to evaluate differentially

expressed MTGs-OS between PC and normal pancreas tissues

from the GTEx and TCGA cohorts. To ascertain the predictive

capabilities of MTGs-OS, we applied the “survival” and “survminer”
Frontiers in Endocrinology 03
R packages. After the intersection, clustering analyses and model

development were carried out using the obtained differentially

expressed MTGs-OS with predictive significance.
2.3 Pan-cancer analysis

To summarize the molecular traits of the above MTGs-OS in a

variety of human cancers, pan-cancer analysis integrating

genomics, transcriptomics, and clinical information was

subsequently carried out (21, 22). First, we downloaded and

compiled the raw data and clinical records of pan-cancer cohorts

from the XENA website. We systematically studied whether the

differentially expressed genes in PC and para-cancerous tissues had

similar expression characteristics in other malignant tumors. In

addition, we investigated the prognostic performances, mutation

traits, and methylation levels of MTGs-OS in a series of human

cancers. Finally, the ssGSEA algorithm was utilized to derive the

MTGs scores of each cancer patient. The GSEA method was then

applied to predict the discrepancies in pathway activities between

patients with high- and low- MTGs scores (23).
2.4 Clustering analysis for 930 patients
with PC

2.4.1 MTGs scores classification of 930 PC
patients into three clusters with significantly
different prognoses and chemosensitivities

GSVA(Gene Set Variation Analysis) package was used to

evaluate the MTGs scores of 930 patients with PC, which could

indirectly reflect the relative activity of MTGs. A higher MTGs

scores means that patients with a subtype of PC have a relatively

high-activity MTGs phenotype, whereas a lower MTGs score

implies a low-activity MTGs phenotype. Based on the MTGs

scores, we then classified 930 patients with pancreatic cancer into

three subtypes: MTGs active (cluster 2 or C2), MTGs inactive

(cluster 3 or C3), and normal MTGs (cluster 1 or C1). Finally,

the clustering outcome and the expression characteristics of each

MTGs is shown in the form of a heat map.

To highlight the clinical value of MTGs scores, we compared the

clinical outcomes and treatment strategies of different subgroups of

pancreatic cancer patients. To examine the variation in prognosis

among these 3 categories, the “survival” and “survminer” R

programs were used. To derive the half-maximal inhibitory

concentration (IC50) of the pharmaceuticals in each of the 3

clusters the “pRRophetic” program in R was applied. Notably,

higher drug responsiveness was indicated by a lower IC50 value.

2.4.2 Distributions of classical cancer-related
genes and pathways across three clusters

The “string,” “pheatmap,” “gplots,” and “gird,” packages in R were

employed to investigate the expression patterns of several tumor

suppressor genes and oncogenes across the three clusters to gain

insight into the possible regulation mechanism of the MTGs in PC.

The expression profiles of numerous tumor suppressor genes and
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oncogenes in PC were subjected to comparison across clusters by

means of the Kruskal-Wallis test. Furthermore, the enrichment scores

of established metabolic and immune-related pathways were derived

through ssGSEA, and a similar strategy was applied to characterize the

differences in these pathways across three MTGs clusters.

2.4.3 Association of MTGs scores with immune
cell infiltration

Similar to the method previously reported in the literature (24),

the ssGSEA algorithm was adopted to evaluate the characteristics of

the immune microenvironment, including immune cell infiltrations

and immune-related functions, in 930 patients with PC. To further

investigate the critical modulatory role of MTGs on the immune

microenvironment in PC, we assessed the association of each MTG

with the aforementioned immune cell infiltrations and immune-

related activities using the Spearman test. We computed the

spearman’s correlation value and produced a lollipop map to

illustrate our findings on the association of MTGs score with

immune cell infiltration in PC from a wider perspective. In

addition, we generated a scatter plot with the “ggscatterstats”

package to display the associations of the five classical immune

traits (neutrophils, APC co-inhibition, CCR, T cell co-inhibition,

and macrophages) with the MTGs scores.

More importantly, a series of immune-prediction algorithms

were applied to intensively evaluate the discrepancies in the

immune cell infiltration among different subpopulations of PC

patients. First , based on the transcriptomic data, the

“ESTIMATE” package was adopted to evaluate the variations in

immunological features across the three PC subtypes (on the basis

of the Immune Score, Stromal Score, and ESTIMATE Score) (25).

Then, cell immune responses or cellular components were

contrasted among the three PC subtypes using the EPIC,

MCPCOUNTER, TIMER, XCELL, CIBERSORT-ABS, and

CIBERSORT, algorithms (26). We conducted the Kruskal-Wallis

test to examine the relative differences in immune checkpoint

expression across distinct subtypes of PC, as immune checkpoints

perform a fundamental role in the functioning of immune cells.
2.5 A novel prognostic signature
development and verification

2.5.1 Development and verification of
a novel MTGs-related prognostic signature
for 930 PC patients

The expression of MTGs-OS was used to develop an innovative

prognostic signature that was verified to more accurately predict a

patient’s chance of survival. Signature cohort 1 comprised 635

patients from the TCGA-PC, MTAB-6134, GSE62452, GSE57495,

and GSE28735 datasets, whereas signature cohort 2 comprised 295

patients from the ICGC-CA and ICGC-AU datasets.

Subsequently, approximately 70% of samples in signature

cohort1 were randomly obtained and designated as the train

dataset used for developing MTGs-RPS (n=447). The remaining

30% of samples in signature cohort1 were defined as the test1 cohort

(n=188). All samples in signature cohort1 were allocated to the test2
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cohort (n=635) and all samples in the signature cohort2 were

allocated to the test3 cohort (n=295).

To avoid overfitting and identify feasible factors from the

MTGs, a least absolute shrinkage and selection operator (LASSO)

regression analysis was conducted on the train set. Subsequently, to

develop an MTG-RPS, a multivariate Cox proportional hazards

regression model was established, and the risk scores were estimated

with the help of the equation below: risk score = o
n

k=1

expk*bk.

Following the completion of the calculations necessary to

determine each patient’s individual risk score within the train set,

patients were then classified into high-risk and low-risk groups

(categories) as per the median risk score. The PC patients in the

internal (i.e. test1 and test2) and external (test3) validation datasets

were further classified into high- and low-risk categories as per the

train cohort-related median risk score.

The analyses below were conducted on the train, (i.e. test1 and

test2) and external (test3) validation datasets to develop and

validate the MTGs-RPS: (1) The ‘pheatmap’ R program was

utilized to produce a heatmap that illustrates the various degrees

of expression of the MTGs. (2) A survival study was conducted with

the Kaplan-Meier (KM) method to ascertain if the MTGs-RPS is

useful for forecasting prognosis; (3) We created receiver-operating

characteristic (ROC) curves for evaluating the diagnostic capability

of the MTGs-RPS based on the area under the curve (AUC).

2.5.2 The validation of the hub RNA expression
with quantitative real-time PCR

The cell lines H6C7(Human pancreatic ductal epithelial cells,

HPDE6-C7), and the PC cell lines CF-PAC1, BxPC-3, and Panc-1

were supplied by the ATCC company. The DMEM augmented with

10% FBS (Gibco, USA) was used to culture H6C7 and Panc-1 cell

lines. Next, the BxPC-3 cell line was cultured in a 1640 medium

with 10% FBS (Gibco, USA). Additionally, the CF-PAC1 cell line

was cultured with IMDM with 10% (FBS) (Procell, China).

The total mRNAs of H6C7, CF-PAC1, Panc-1and BxPC-3 cell

lines were extracted by the TRIzol kit. The cDNAs of H6C7, CF-

PAC1, Panc-1and BxPC-3 cell lines were obtained by the reverse

transcription of the mRNAs using the Reverse Transcription Reagent.

The qPCR Kit (Accurate Biotechnology) was employed to conduct

RT-PCR. GAPDH served as the control standard. Thereafter, the level

of RNA expression was analyzed and quantified by the DDCt method.

Below are the sequences of the primers employed to investigate the 11

human hub genes: COQ4, 5’- CCTGTCCTCCGTCGGCTCTG-3’

(Forward), 5’- GTGGGGAGGTGGTGCGAGTATAG-3’ (Reverse);

MCRIP2, 5’- ATGTCCGCTTTGTGTCCGAAGAC-3’ (Forward),

5’- GGTGATTCTCGCCAGGAACTGC-3’ (Reverse); SOD1, 5’-

TGTTGGAGACTTGGGCAATGTGAC-3 ’ (Forward), 5 ’-

ACCAGTGTGCGGCCAATGATG-3’ (Reverse); NDUFB8, 5’-

ACAACAGGAACCGTGTGGATACATC-3’ (Forward), 5’-

TGAAAGCCAGGAAACCGAAGAGC-3’ (Reverse); MRPL50, 5’-

AATTGGCAAGACATCTCCCTGGAAG-3’ (Forward), 5’-

ACATCTGGTGGAGTCTGGAGTTAGG-3’ (Reverse); BIK, 5’-

GAGGGCAGTGACGCATTGGC-3’ (Forward), 5’- CCTCAGTCTG

GTCGTAGATGAAAGC-3’ (Reverse); MRPL14, 5’- AGCCATC

ACTGTTTCAGCACCAC-3 ’ (Forward), 5 ’- GCACTGTT
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GTCCACCACTCGTAC-3’ (Reverse); RFK, 5’- GATGGTGGTG

AGCATAGGATGGAAC-3’ (Forward), 5’- TTCTGGTCTC

AGGTAGCCAACAATG-3’ (Reverse); NMNAT3, 5’- CAGCAAG

ACACCATCAGCCTCTG-3 ’ (Forward), 5 ’- ACGCACAC

CAAGCCGAACTTC-3 ’ (Reverse) ; BNIP3L, 5 ’- CCAT

CCTCATCCTCCATCCACAATG-3’ (Forward), 5’- CGAAGGGC

TGTCACAGTGAGAAC-3’ (Reverse); MRPS5, 5’- GATCCGT

GTCTTGGTGGCTGTG-3 ’ (Forward), 5 ’- TGAAAGCAT

CCATCCGATCAGTAGC-3’ (Reverse).

2.5.3 The discrepancy of drug sensitivity, immune
cell infiltration, and immune checkpoint genes
expression in low- and high-risk subgroups

Drug sensitivity was predicted for each PC patient using the

“pRRophetic” R package, and possible sensitive medicines were

screened using the “Wilcox.test” R function. The only medications

that were regarded to be effective targeted treatments were those

that showed statistical significance across all four groups (train,

test1, test2, and test3). Notably, higher drug sensitivity corresponds

to a low IC50 value.

Cell immune responses or cellular components were evaluated

using the CIBERSORT-ABS, XCELL, EPIC, MCPCOUNTER,

CIBERSORT, and TIMER algorithms and compared between

model-based low- and high-risk categories. Additionally, we

explored if there were any variances in ICG expression among

low- and high-risk patients. Only the ICGs with significant

statistical differences were displayed.
2.6 Clustering analysis for 226 patients
with PNET

The intrinsic molecular heterogeneity of patients with PNET

was identified by a method similar to that of previous cluster

analysis. Firstly, the MTGs scores of each PNET patient was

evaluated based on the GSVA package, and the MTGs scores

were combined with the expression profile of related genes. Based

on the MTGs scores and gene expression profile, cluster analysis
Frontiers in Endocrinology 05
was carried out in patients with PNET. Similarly, 226 patients with

PNET were divided into C2 and C3 subtypes, and the MTGs scores

of different subtypes were compared. The two subtypes with no

difference in MTGs scores were further merged to get S1 and S2

PNET genotypes, and the MTGs scores between S1 and S2 were

compared again. The classical metabolic pathway score and

immune pathway score of each PNET patient were calculated

based on GSVA package to characterize the inherent molecular

characteristics of different PNET subtypes.

3 Results

3.1 Detection of differentially expressed
MTGs linked to PC prognosis

The detailed analytic workflow of this research was displayed in

Figure 1. Through the classical bioinformatics difference analysis, we

found 469 MTGs-OS in PC (Figure 2A). Among 469 MTGs-OS, 182

differentially expressed MTGs-OS were discovered using the lima

program in R (Supplementary Table 1). More importantly, 137

MTGs-OS were detected to be remarkably associated with PC

prognoses (Supplementary Table 2). After the intersection, 56

differentially expressed MTGs-OS with prognostic values were

obtained (Figure 2B). The differential expression profiles of above 56

candidate genes were demonstrated in Figure 2C. The prognostic forest

plot was also showed in Figure 2D. Notably, most MTGs-OS showed

obvious down-regulated expression tendency in PC tissues and were

closely associated with favorable prognoses, suggesting their protective

roles of MTGs-OS in PC. In addition, the co-expressed relationship

among these 56 molecules was intensively explored (Figure 2E).
3.2 Pan-cancer characterization of 56
differentially expressed MTGs-OS with
prognostic values

Then, to examine the molecular traits of the 56 MTGs-OS in other

human cancers, pan-cancer analyses were carried out based on
FIGURE 1

The detailed analytic workflow of the research.
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genomics, transcriptomics, and clinical information. First, we

researched the expression characteristics of 56 MTGs-OS in other

malignant tumors (Figure 3A). Most of the 56 MTGs-OS were

expressed differentially between tumors and adjacent normal samples

in diverse cancers, including CHOL, COAD, KIRC, UCEC, and LUSC.

Besides, the levels of FKBP10, PIF1, and PMAIP1 in nearly all tumor

tissues were elevated in contrast with those in paired normal samples;

conversely, in almost every case, tumor tissues had lower expression of

PDK4, ALDH1L1, ACACB, ACSF2, EPHX2, GATM, ACAT1, and

ETFDH than their matched normal tissues. The association of gene

expression with patient survival time was then evaluated, and the

predictive capabilities of the 56 MTGs-OS in pan-cancers were

investigated. As depicted in Figure 3B, we performed a univariate

cox regression analysis to determine the MTGs-OS that served as risk
Frontiers in Endocrinology 06
factors (HR>1 and p<0.05) and those with protective function (HR<1

and p<0.05). We discovered that certain MTGs-OS are risk factors in

part of malignancies, including UVM, ACC, LIHC, KICH, and LGG;

however, similar to the protective function of MTGs-OS in PC, these

genes also had protective properties in KIRC, MESO, and KIRP. To

investigate the mutational characteristics of the 56 MTGs-OS in

tumors, the proportion of CNV was studied, and the outcomes

showed that CNV happened at high frequency (nearly within the

range of 10 to 60%) in the diverse types of cancer (Figure 3C). Then, we

discovered that BLCA, BRCA, COAD, LUAD, SKCM, STAD, and

UCEC, all exhibited a higher frequency of SNVs, especially for UCEC;

conversely, the SNV frequency in CHOL, ACC, DLBC, UVM, THYM,

THCA, TGCT, PCPG, MESO, LAML, and KICH was low, especially

for CHOL and UVM. Interestingly, we found that the SNV of ACACB,
B

C

D

E

A

FIGURE 2

Determining MTGs with differential expression and their prognostic value. (A) A Venn diagram revealed 469 MTGs associated with oxidative stress
that were involved in PAAD. (B) 56 differentially expressed MTGs-OS with prognostic values were identified. (C) A Heatmap depicted above 56
candidate genes with differential expression between PAAD and normal pancreatic tissues. (D) A prognosis-related forest depicted above 56
candidate genes. (E) The co-expressed relationship of 56 candidate genes.
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ALDH1L1, and GLDC was in significantly high frequencies than that

of the other MTGs-OS, as illustrated by the heatmap and waterfall

diagram of SNV (Figures 3D, E). Notably, the methylation of

promoters and abnormal DNA methylation might influence gene

expression (27). Therefore, we discovered that MTGs-OS had

complicated methylation patterns in different types of cancer. As a

whole, the changes in methylation levels of MTGs-OS were not

significant in most human cancers, including PC, according to the

result (Figure 3F). EPHX2, ACSF2, CYP27A1, ACSS1, and ALDH1L1

showed hypermethylation in several types of human cancer; on the

contrary, AKR1B10, POLG2, NDUFB8, ACACB, and MRPS22

consistently showed hypomethylation in several types of

human cancer.
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3.3 Cluster analysis for 930 PC patients
based on MTGs-OS scores

In consideration of the function and impact of MTGs-OS in

PC, the enrichment scores of MTGs-OS were initially evaluated

via ssGSEA for a sum of 930 patients. The 930 different PC

samples were divided up into three unique categories (Cluster1,

Cluster C2, and Cluster C3) as per the concentrations of mRNA

that MTGs-OS expresses (Figure 4A). C1, C2, and C3 comprised

patients with normal, active, and inactive MTGs-OS, respectively.

The violin plot illustrates that C2 has the highest enrichment score

out of the three clusters, followed by C1 and C3 (Figure 4B).

Subsequently, by plotting the survival curves for the three
A B

D
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F

C

FIGURE 3

Pan-cancer characterization of 56 differentially expressed MTGs-OS. (A) The expression characteristics of 56 MTGs-OS in other malignant tumors
(P<0.05). (B) Survival profiles of the MTGs-OS pan-cancer. Genes with P > 0.05 are highlighted in white, whereas the risk and protective genes are
denoted by the red and blue colors, correspondingly. (C) Gain and loss frequencies of CNVs in the 56 MTGs-OS in various cancers. The frequency
variation of MTGs-OS in pan-cancers is shown by the line’s length. (D, E) SNV data of the 56 MTGs-OS depicted in pan-cancers by heatmap and
waterfall plot. (F) The DNA methylation of 56 MTGs-OS in pan-cancers (the gradient from red to blue represents a decline from a high to a low level).
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categories, we assessed the reliability of the clustering technique.

As for the 3 clusters, we found that patients in C3 exhibited the

lowest overall survival rates whereas those in C2 exhibited

the highest overall survival rates (Figure 4C), which revealed

that the MTGs-OS score was a protective indicator. The result

in the part was in accordance with the results of previous

univariate Cox regression analysis. Overall, based on these

findings, we conclude that our PC classification technique is

accurate, credible, and scientific.
3.4 Link between drug sensitivity and
MTGs-OS scores

At present, the treatment status of pancreatic cancer is still grim.

The new concept of oncology has been instrumental in the rapid

advancement of cancer detection and therapy in recent years. Targeted

therapy and immunotherapy have advanced the comprehensive

diagnostic testing and management of PC beyond the reach of
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standard therapies like surgery, chemotherapy, and radiation

treatments. The foundation of molecular targeted therapy is the

knowledge of the molecular biology of neoplasm. Key molecules

associated with cancer were identified, which might be used as

therapeutic targets. According to the characteristics of the

therapeutic targets, using highly precise medications and agents to

treat cancer is promising. Based on previous research reports,

mitochondrial-related OS participates in the onset and progression

of tumors. We also discovered that the MTGs-OS score was a marker

that might be protective for those with PC. Therefore, we evaluated the

connection between MTGs-OS and the effectiveness of targeted

pharmaceuticals already available for treating PC. Twelve drugs

were chosen, including mTOR inhibitor (Rapamycin), AMPK

activator (AICAR), MEK inhibitors (Selumetinib) plant anticancer

drugs (cisplatin), pyrimidine antineoplastic drugs (gemcitabine),

PI3Kb inhibitors (AZD6482), tyrosine kinase inhibitor (ponatinib),

IGF-1R/IR inhibitor (BMS.754807, linsitinib), metformin and the

other chemotherapeutic drugs (doxorubicin, bleomycin). We

applied the “pRRophetic” program to make a comparison of the
B C

A

FIGURE 4

Cluster analysis based on MTGs-OS scores. (A) In this case, the heat map shows three distinct clusters based on the gene data: Clusters C1, C2, and
C3, as per MTGs-OS mRNA expression levels. The tumor patients with normal, active, and inactive MTGs-OS were categorized under C1, C2, and
C3, respectively. The right-hand bar’s colors indicate the degree of mRNA regulation: white for no regulation, blue for downregulation, and red for
upregulation. The MTGs-OS is presented in four distinct hues, with blue signifying negative values and red signifying positive ones. (B) As depicted in
the violin plot, the enrichment scores for each of the three clusters were ranked as follows: C2 > C1 > C3. On top of each cluster, the corresponding
p-values are shown. (C) The three clusters are represented by a survival curve. In comparison to C1 and C2, cluster 3 has a lower chance of survival.
Red, green, and black lines denote C1, C2, and C3, respectively. The x-coordinate is survival time, while the ordinate is the survival rate.
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IC50 values of the 12 drugs across these three molecular subgroups.

We compiled a list of MTGs-OS clusters and their associated

medication sensitivities: Rapamycin: C2 > C1 > C3; AICAR: C3 >

C2 > C1; AZD6244(selumetinib): C1 > C2 > C3; cisplatin: C3> C1 >

C2; gemcitabine: C3> C1 > C2; AZD6482(PI3Kb inhibitors): C3> C1

> C2; AP.24534 (ponatinib): C3> C1 > C2; BMS.754807 (IGF-1R/IR

inhibitor): C1> C3 > C2; OSI.906(linsitinib): C3 > C2 > C1;

doxorubicin: C3> C1 > C2; bleomycin: C3>C1>C2 (Figures 5A–L).
3.5 Correlation of MTGs-OS scores with
potentially targetable classical genes,
metabolism, and immune-related pathways

To examine the possible regulation mechanism of the MTGs-

OS in PC, we evaluated the expression profiles of tumor suppressor

genes and oncogenes in the 3 clusters, as illustrated by the heatmap

in Figure 6A. We found that the expression levels of most of the

oncogenes were much higher in C3 compared with C1 and C2, such

as STAB1, TENM3, PIK3CA, ZFHX4, ADAMTS12, GLI3, HMCN1

and so on. On the contrary, C3 was shown to have a lower

expression of tumor suppressor genes including RNF43, in

contrast with C1 and C2. The stimulation of oncogenes and

inhibition of suppressor genes probably resulted in the worst

prognosis in C3. Interestingly, as was the case in the oncogenes,

we discovered that the expression patterns of several tumor
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suppressor genes, such as PTEN, were highest in C3, but elevated

in C1 and C2. We also examined the levels of activity in commonly

recognized metabolic and immune-related pathways across the

three clusters and computed the enrichment scores by ssGSEA

(Figures 6B, C). Interestingly, various metabolism and immune-

related pathways exhibited significant differences in the 3 clusters.

We found that most of the protective metabolism pathways

including KEGG_GLYCINE_SERINE_AND_THREONINE

_METABOLISM were more inactive in C3 than that in C1 and

C2. Also, almost all the immune-associated pathways were more

active in C3 than in C1 and C2, such as KEGG_P53_SIGNALING

_PATHWAY and KEGG_PROGESTERONE_MEDIATED

_OOCYTE_MATURATION, which suggested that the degree of

malignancy for PC was highest in the C3 leading to the worst

prognosis. Additionally, the aforementioned findings established

that MTGs-OS were protective factors for PC since they were

strongly linked to metabolic reprogramming and immune-

related pathways.
3.6 Correlations of the MTGs-OS scores
with immune cell infiltration

It has been well-recognized that the tumor microenvironment

(TME) performs an instrumental function in PC development (28,

29). It has been postulated that the TME, particularly the features of
B C D
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A

FIGURE 5

The link between drug sensitivity and MTGs-OS scores. The box plot for the estimated IC50 of 12 different types of commonly used chemotherapy
regimens conducted in (A–L) for C1 (yellow), C2 (blue), and C3 (green). The 12 different classes of chemotherapy regimens include Rapamycin,
AICAR, AZD6244 (selumetinib), cisplatin, gemcitabine, AZD6482 (PI3Kb inhibitors), AP.24534 (ponatinib), BMS.754807 (IGF-1R/IR inhibitor), OSI.906
(linsitinib), doxorubicin, bleomycin, and metformin. On top of each cluster, the corresponding p-values are shown, and the P< 0.05 denotes the
significance level.
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tumor-infiltrating immune cells (TIICs), might be used as treatment

targets for cancer (30). The levels of ROS in the TME are critical for

regulating the levels of immune cells and their functions in the

TME, particularly the activation, expansion, and effector function of

T lymphocytes (31, 32). Within the scope of this research, we delved

deeper into the link between MTGs-OS and the infiltration levels of

immune cells as well as the corresponding immune functions

(Figure 6D). The expression of following genes, NDUFA7,

NDUFA3, MMAB, MCRIP2, and COQ4, were negatively

correlated with immunocyte infiltration and immune-related

functions. Conversely, UCP2, ACAT1, CYP27A1, DLAT, FTH1,

MPV17, PMAIP1, PPTC7, and GLDC, were positively linked to the

infiltration levels of immune cells. Notably, ICGs contributed to

anti-tumor immunity by modulating the function of effector T
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lymphocytes. Therefore, we studied the relationship between ICGs

in the 3 clusters (Figure 6E). We discovered that the MTGs-OS-

inactive cluster was correlated with overexpression of ICGs,

illustrating that MTGs-OS-inactive patients had the weakest anti-

tumor immunity and a poor prognosis. Subsequently, we assessed

the association of MTGs-OS scores with immune cell infiltration

(Figures 6F–K). Most infiltrating immune cells, comprising

neutrophils, APC co-inhibition, CCR, T cell co-inhibition, and

macrophages, were shown to have a negative link to MTGs-OS

scores. The “ESTIMATE” R program was also used to examine the

TIME of the three subtypes. The immune, stromal, and ESTIMATE

scores, as well as the tumor purity, were depicted in Figures 7A–D.

We discovered that C2 had considerably decreased stromal,

immune, and ESTIMATE scores in contrast to C3. On the
B
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FIGURE 6

Correlation of MTGs-OS scores with classical oncogenes, metabolism, and immune-related pathways. (A) Three MTGs-OS clusters show varying
degrees of expression of different oncogenes and tumor suppressor genes. (B) The activity of well-recognized metabolism in the 3 clusters. (C) The
activity of well-recognized and immune-related pathways in the 3 clusters. (D) A link between MTGs-OS and immune cell infiltration is depicted via
a heat map. Positive and negative associations are depicted in red and blue, respectively. (E) Immune checkpoint expression differs considerably
across the three MTGs-OS clusters. (F) An illustration of the link between MTGs-OS and immune cell infiltration status. The dimension of the sphere
of the figure represents the degree of abs (correlation), whereas the color represents the p-value. (G–K) The scatter plot draws the relationship of
MTGs-OS with 5 immune-infiltration-related substances. The MTGs-OS have a negative link to the infiltration status of neutrophils, APC co-
inhibition, CCR, T cell co-inhibition, and macrophages. (* denotes p<0.05; ** denotes p< 0.01; *** denotes p< 0.001;**** denotes p< 0.0001).
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contrary, although the tumor purity in C2 was substantially

increased in contrast with that in C3, the patients in C2 had a

better prognosis. At the same time, we evaluated immune cell

responses or cellular components in the three PC subtypes

according to the EPIC, MCPCOUNTER, CIBERSORT-ABS,

XCELL, CIBERSORT, and TIMER algorithms (Figure 7E).

Overall, the cellular immune responses or cellular components

were significantly different among three clusters, which suggested

that there was a close link between the infiltration status of most

immune cells and the MTGs-OS score.
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3.7 Construction and verification of a novel
MTGs-RPS for predicting the clinical
outcomes of patients with PC

Previous 56 differentially expressed MTGs-OS with prognostic

values were used for conducting the following LASSO-Cox

regression analysis. LASSO regression analysis identified 18 candidate

molecules and multivariate Cox regression analysis determined 11 hub

MTGs-OS (i.e., COQ4, MCRIP2, SOD1, NDUFB8, MRPL50, BIK,

MRPL14, RFK, NMNAT3, BNIP3L, MRPS5) for constructing the
B

C D

E

A

FIGURE 7

Systematic analysis of the tumor immune microenvironment and immune cell infiltration in the C1, C2, and C3 subgroups. (A–D) Comparison of the tumor
immune microenvironment components in the C1, C2, and C3. (E) The distribution patterns of immune cell infiltration in the C1, C2, and C3 subsets.
*P<0.05; **P<0.01; ***P<0.001; ****P <0.0001; ns, no significance.
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prognostic model (Supplementary Figures 1A–C). To additionally

validate the fundamental function of the selected modeling genes in

the onset and progression of PC, we investigated the association of the

eleven model genes with PAAD stage and metastasis based on the

GEPIA and BEST platforms (Figure 8).

Subsequently, 11 hub MTGs-OS’s expression levels were

verified by RT-PCR in four cell lines (Figure 9). We observed that

the mRNA expression trend of the 11 hub MTGs-OS was almost

consistent with the results predicted by our bioinformatics analysis.

As for BxPC-3 cell line, the expression levels of BIK, COQ4,

MRPL14, MRPL50, and NMNAT3 were significantly up-

regulated. As for CF-PAC1 cell line, the expression level of BIK

was significantly up-regulated and the expression level of MRPL50

was significantly down-regulated. As for Panc-1 cell line, there is no

significant difference as regards above eleven model genes. As for

Mia-Paca-2, the expression levels of BNIP3L and NMNAT3 were

significantly up-regulated. Using the HPA database, we searched

through immunohistochemical findings of tumor and normal

pancreatic tissues to verify the expression pattern of 11 hub

MTGs-OS at the protein levels (Figure 10). At the same time, we

studied the cellular localization of the 11 MTGs-OS, however, we

did not find the information of cellular localization of BIK and

MCRIP2 in the HPA database. Therefore, we showed cellular

localization of the other 9 MTGs-OS (COQ4, SOD1, NDUFB8,

MRPL50, MRPL14, RFK, NMNAT3, BNIP3L, MRPS5) in

Figure 10. The expression products of COQ4, MRPS5, MRPL14,

NDUFB8, and NMNAT3 were mainly located in the mitochondria.

The expression products of RFK, MRPL50, and SOD1 were located

Golgi apparatus, mitochondria and cytosol, nucleoplasm and

plasma membrane and cytosol, and mitochondria and nuclear

speckles, respectively.

Based on the result above, the evaluation of the prognostic

performance of the MTGs-RPS was displayed in Figure 11. PC

patients in the train set were classified into two subgroups by KM

survival analysis. The high-risk category recorded a lower overall

survival time than the low-risk category, which suggested that the

MTGs-RPS could precisely differentiate patients with a poor and a

favorable prognosis for PC (Figure 11A). As per ROC analysis, we

proved the accuracy and robustness of MTGs-RPS as a diagnostic

tool. The 5-year survival AUC of the ROC curve AUC was 0.780

(Figure 11E). Furthermore, both internal and external validations of

survival data found that PC patients with low-risk scores recorded

superior overall survival rates (Figures 11B–D). In addition, when

comparing the test1 with the test2 and external validation sets, we

discovered that the AUC values of the 5-year ROC curve were 0.658,

0.742, and 0.673, respectively (Figures 11F–H). The results above

could suggest the dependability and accuracy of the MTGs-RPS.

During the process of establishing the MTGs-RPS, we classified

447 PC patients into low- and high-risk categories as per the median

risk in the train set (Supplementary Figure 2A). As per the

distributions of risk scores, the mortality rate was remarkably

greater among the high-risk subset of PC patients (Supplementary

Figure 2E). The prognostic signature encompassed 11 different

MTGs-OS, and their expression patterns were displayed in a

heatmap (Supplementary Figure 2I). As we had anticipated, the

same technique effectively classified PC patients into low- and high-
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risk categories across all three cohorts (test1, test 2, and test 3)

(Supplementary Figures 2B–D). Notably, the median risk score

functioned as a benchmark in the train dataset when separating the

samples in test1, test2, and test3. In the three cohorts, similarities

were observed between the risk score distributions and survival

status recorded in the train set and those reported in the internal

(test1 and test2 cohorts) and the external validation dataset

(Supplementary Figures 2F–H). The expression patterns of the

MTGs-OS reported by heatmaps in the test1, test2, and test3

cohorts were similar to that in the train cohort (Supplementary

Figures 2G–L).
3.8 The discrepancy in drug sensitivity
between low and high-risk patients

As mentioned above, targeted therapies have shown promise in

the management of PC, and this is becoming increasingly

important. Hence, to identify potentially sensitive medications in

both high- and low-risk patients, the “Wilcox.test” tool was used.

To be selective, a drug had to show statistical significance across all

four categories (train, test1, test2, and test3); we found that 17

distinct drugs had different sensitivities for all the cohorts

(Figures 12A–D). The 17 drugs were listed as follows: AUY922,

CGP.60474, cisplatin, CMK, dasatinib, docetaxel, EHT.1864,

FTI.277, imatinib, JNJ.26854165, LFM.A13, metformin,

midostaurin, pazopanib PLX4720, salubrinal, and thapsigargin.
3.9 The discrepancy in immune cell
infiltration and immune checkpoint genes
between low- and high-risk patients

The different levels of immune cell infiltration in the low- and

high-risk patients were evaluated according to the TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,

XCELL, and EPIC algorithms. For both derivation and validation

cohorts, the distribution of immunocyte infiltration exhibited obvious

discrepancy between high- and low-risk category, further implying

the crucial role of mitochondria genes associated with oxidative stress

in tumor immune microenvironment (Figures 13A–D). In addition,

we also evaluated the levels of expression of ICGs in high- and low-

risk patients, given the significance of ICGs in the anti-tumor activity

of immune cells. All of the ICGs in the train set exhibited substantial

differences, as our findings showed (Figure 13E). In the test1 datasets,

there was a substantial difference in four ICGs between low- and high-

risk categories (Figure 13F). The findings of the immune checkpoints

performed on the test2 cohorts were comparable to those performed

on the train cohorts (Figure 13G). There were nine ICGs that

substantially expressed differing amounts in the low- and high-risk

patients in the test3 cohorts (Figure 13H). Even though the number of

genes with differential expression varied across the training and

validation sets, the expression pattern of nearly all ICGs was

reduced in the low-risk category in contrast to the high-risk

category. These findings might explain why the low risk patients

had a favorable prognosis.
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3.10 Cluster analysis for 226 PNET patients
based on MTGs-OS scores

After performing cluster analysis, 226 patients with PNET were

successfully stratified into three clusters (i.e. C1, C2, and C3)

(Supplementary Figure 3A). Both C1 and C2 clusters

demonstrated relatively higher MTGs scores than C3 cluster;

however, there is no significant difference of MTGs scores

between C1 and C2 clusters (Supplementary Figure 3B). Thus, C1

and C2 clusters with similar MTGs scores were subsequently

integrated and defined as S1 subtype. The C3 cluster with

relatively lower MTGs scores was regarded as S2 subtype.

Likewise, significantly higher MTG scores were observed in PNET

patients with S1 subtype than S2 subtype (Supplementary

Figure 3C). In addition, we compared the expression profiles of

oncogenes and tumor suppressor genes between S1 and S2 subtypes

(Supplementary Figure 4). Of note, the expression levels of GNAS,

HRAS, PDZRN3, and SYNE2 showed significantly different

between two subtypes. More importantly, we also compared the

discrepancies in metabolism and immune-related pathways

between two subtypes. Our findings showed that the S1 subtype

was accompanied by higher activities of sphingolipid metabolism
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and lower activities of B cell and T cell receptor signaling pathway

(Supplementary Figure 5).
4 Discussion

Pancreatic cancer is a type of cancer that begins in the pancreas.

It is one of the most aggressive and deadly forms of cancer with a

five-year survival rate of just 8% in the United States (33). And it is

the sixth leading cause of cancer-related mortality in China (34). As

we all know, the pancreas is the largest endocrine gland in the body.

When the hormone-producing pancreatic cells, such as islet A cells

and B cells and so on, become cancerous, which could lead to the

PNET (35). And the incidence of PNET is increasing in the past

decades and account for 3%-7% of pancreatic tumors (35). The

MDF can lead to mitochondrial OS producing excessive ROS,

which could contribute to base replacement mutations of T/C or

G/A in mtDNA. Therefore, the mtDNA mutation is related to the

oxidative stress environment caused by the MDF, which is

carcinogenesis (36, 37). Additionally, the MDF can lead to an

increase in pancreatitis, which can also increase the risk of

pancreatic cancer (38–40). Researches revealed that MDF has
B

A

FIGURE 8

The relationship between the eleven genes and the stage and the metastasis capability of PAAD. (A) The relationship between 10 hub -genes(COQ4,
SOD1, NDUFB8, MRPL50, BIK, MRPL14, RFK, NMNAT3, BNIP3L, MRPS5) and the stage of PAAD. (B) The relationship between 10 hub -genes(MCRIP2,
SOD1, NDUFB8, MRPL50, BIK, MRPL14, RFK, NMNAT3, BNIP3L, MRPS5) and the metastasis capability of PAAD.
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been linked to an increased risk of pancreatic cancer (41–44).

Similarly, the functions of hormone-producing pancreatic cells

depend on the mitochondria, so the MDF may affect the normal

function of pancreatic cells leading to the occurrence of PNET (45,

46). At present, patients with PC has poor prognosis and strong

individual heterogeneity. Nevertheless, there is no study

investigating the omics of mitochondrial disorders and oxidative

stress to identify individual differences in patients with PC and

PNET. Consequently, we evaluated the activity of MTGs-OS in each

patient based on a series of bioinformatics algorithms, which are

beneficial to the development of personalized treatment strategies

for patients with PC and PNET.

First, we identified 469 differentially expressed MTGs-OS

guided by the MitoCarta3.0 and GeneCard database using the

traditional method of difference analysis. Notably, key genes in

disease pathogenesis often have both variable expression patterns

and high clinical relevance. Therefore, we discovered 56

differentially expressed MTGs-OS between PC and normal

pancreatic tissues and correlating with PC prognoses. In addition,

MTGs-OS were shown to be protective factors against PC. We also

illustrated the co-expressed relationship among the 56 MTGs-OS.

We discovered that all genes have at least one interaction with each

other, with most of these interactions being positively correlated.

The expression features, prognostic implications, mutation

profiles, methylation patterns, and signaling pathway correlations
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of MTGs-OS were then investigated in various human tumors using

bioinformatics-related methods for the first time. For instance,

ALDH1L1 regulates the overall flow of one carbon group in the

folate-dependent biosynthetic pathway. Through promoter

methylation, it is significantly and frequently down-regulated in

malignant tumors (47–49). Recent research has highlighted the

enzyme’s potential as a marker of invasive carcinoma and as a

tumor suppressor, which was in accordance with our bioinformatics

analyses (49).

According to the MTGs-OS, we plotted the pan-cancer map for

the first time, which provided novel insights and preliminary

research foundation into the involvements of MTGs-OS in pan-

cancer. Considering the importance and relevance for MTGs-OS in

pan-cancer, we could try to classify the human tumors based on the

MTGs-OS. And MTGs-OS identification might help translate

specific immunotherapies for one type of cancer into patients

with other types of cancer. At the same time, the pan-cancer map

might provide the guidance for the basic scientific research

exploration of the MTGs-OS in the future. For patients with PC,

we discovered that most MTGs-OS existed as putative protective

genes. This result is consistent with the earlier studies (50–52),

which show that appropriate upregulation of MTGs-OS might

contribute to improved patients’ prognoses in PC. The

mitochondrial ROS were shown to be beneficial to PC, which

could provide new insights and points for exploring the
FIGURE 9

Verification of the expression levels of the eleven hub MTGs-OS by the RT-PCR. *P<0.05; **P<0.01; ****P<0.001; ns, no significance.
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mechanism of action of MTGs-OS in fundamental researches and

treating the patients with PC in clinical.

We then classified PC patients into three clusters according to

their MTGs-OS expression. Patients with PC who belonged to the

MTGs-OS inactive cluster had a worse survival rate compared to

those belonging to the MTGs-OS active cluster. Similar to these

findings, we discovered that MTGs-OS were mostly protective.
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At present, targeted drugs exist for several neoplasms, including

breast and ovarian malignancies, but not for PC (53). Considering

the crucial effects of MTGs-OS in PC, we explored the roles of

several commonly used drugs that target MTGs-OS in the

treatment of PC. We found that the three clusters responded

differentially depending on the drug selected. If the levels of

MTGs-OS expression were utilized as the gold standard for
B C D
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FIGURE 11

The establishment and evaluation of the prognostic performance of the MTG-RPS. (A–D) Survival curve of overall survival time between low- and
high-risk patients of the MTG-RPS in the train, test1, test2, and test3 cohort. (E–H) ROC curve of 5 years between low- and high-risk patients of the
MTG-RPS in the train, test1, test2, and test3 datasets with the area under the curve (AUC) of 0.780, 0.658, 0.742, and 0.673, respectively.
FIGURE 10

Verification of the expression levels of the eleven hub MTGs-OS by the immunohistochemical and immunofluorescence.
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classifying PC, each patient with the disease may get a more

individualized and effective course of therapy. Patients with

inactive MTGs-OS, for instance, could respond better to AICAR

(AMPK activator) and cisplatin, gemcitabine, AZD6482(PI3Kb
inhibitors), and so on.

Notably, the balance between tumor suppressor genes and

oncogenes may exert a role in the onset and advancement of PC

and related patient prognosis. By disrupting the balance between

oncogenes and tumor suppressor genes, MTGs-OS may improve

the prognoses of PC individuals. For example, the increased levels of

oncogenes expression (STAB1, TENM3, PIK3CA, ZFHX4,

ADAMTS12, GLI3, HMCN1) and attenuated expression of tumor

suppressors, such as RNF4, in the C3 cluster were correlated with

dismal prognoses. At the same time, we also found that various

metabolism and immune-related pathways exhibited significant
Frontiers in Endocrinology 16
differences in the 3 clusters. Most of the protective metabolism

pa thway s su ch a s KEGG_GLYCINE_SERINE_AND

_THREONINE_METABOLISM, were inactive in C3 contributing

to the worse prognosis for PC individuals. Interestingly, almost all

the immune-associated pathways were more active in C3, indicating

the degree of malignancy for PC was highest in C3.

Immune cells, which are part of the TME, contribute to tumor

clinical outcomes and hence represent potential therapeutic targets

(54, 55). Consequently, we examined the link between immune cell

infiltration and MTGs-OS. Our findings illustrated that MTGs-OS

performs an essential function in immune activation, which

suggests that the MTGs-OS-inactive subgroup of PC has a higher

grade of malignancy. Further, we discovered that MTGs-OS can

trigger both primary and secondary resistance to immune

checkpoint activators. As a result of its overexpression of
B

C D

A

FIGURE 12

Difference in drug sensitivity between low and high-risk patients in train, test1, test2, and test3 cohorts. The box plot for the estimated IC50 of 12
different types of regularly used chemotherapy regimens conducted in (A–D), (A–D) for low-risk (blue) and high-risk patients (purple). The 17 types
of chemotherapeutic agents are AUY922, CGP.60474, cisplatin, CMK, dasatinib, docetaxel, EHT.1864, FTI.277, imatinib, JNJ.26854165, LFM.A13,
metformin, midostaurin, pazopanib, PLX4720, salubrinal, and thapsigargin. On top of each cluster, the corresponding p-values are shown, and the P<
0.05 denotes the significance level.
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immunological checkpoints, the C3 cluster (MTGs-OS-inactive)

likely has the lowest anti-tumor immunity. This may explain the

worse clinical outcomes for patients in MTGs-OS-inactive. Treg

cells, mast cells, and the T helper cell might enhance the

development of neoplasm and promote tumor metastasis

resulting in a poor prognosis in PC (56–58). The data show that

patients in the C3 subtype have the poorest prognosis, which may

be attributed to a negative correlation between immune cells that

promote the malignancy and the MTGs-OS score. Our study

identified the molecular inhibition of MTGs-OS in patients with

PC and revealed the different characteristics in the 3clusters, such as

the expression of tumor suppressor genes and oncogenes, the

activation of vital pathway and TME and so on. In addition,

according to the characteristic, it is beneficial to carry out

personalized intervention for PC patients in clinical and promote

the research development of PC.
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Based on the results above, we could consider the MTGs-OS

play an important role in the development of PC. However, because

of the MTGs-OS molecular heterogeneity complex function of each

MTGs-OS, the classification cannot be able to accurately calculate

the clinical outcome of each patient. Therefore, we established a

molecular prognostic signature that can accurately predict the

clinical outcomes in patients with PC. We used the LASSO-Cox

regression analysis to formulate a prognostic signature consisting of

11 MTGs-OS that can be applied in the prediction of PC patients’

overall survival status. The 11 hub MTGs-OS were BIK, COQ4,

MCRIP2, SOD1, NDUFB8, MRPL50, MRPL14, RFK, NMNAT3,

BNIP3L, MRPS5. The MTGs-RPS we established could predict the

prognosis of PC stably and reliably, which was verified by the

internal validation and external validation sets. The MTGs-RPS

might help the clinical doctors to choose the suitable and personal

treatment therapy for patient with PC. Furthermore, we found the
B

C

D

E

F

G

A

H

FIGURE 13

MTG-RPS-based analysis of tumor immune microenvironment. (A–D) Comparisons of low- and high-risk groupings in the train, test1, test2, and test3
cohorts revealed distinct patterns of immune cell infiltration, as shown by the heat maps. (E–H) Immune checkpoint expression varied across low-
and high-risk groupings throughout the train, test1, test2, and test3 cohorts, as depicted by the box plots. (* designates p<0.05; ** signifies p< 0.01;
*** designates p< 0.001).
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variations in the expression of the 11 hub MTGs-OS between

PAAD and normal pancreatic samples by bioinformatics. We

verified the reliability of the bioinformatics analysis results by

qRT-PCR in five kinds of cell lines(vitro) and IHC(vivo) in the

HPA database. Almost the validated results were consistent with

those predicted by the bioinformatics analysis.

The similar function of the 11 hub genes in tumor or pancreatic

cancer has been reported in other researches. BIK is a proapoptotic

gene, there were research showing liposome complexed with

mutant Bik(T33D/S35D) gene could enhance the anti-tumor

effect of BIK in various animal cancer models, including the

pancreatic cancer (59). SOD1 could eliminate toxic radicals. Study

show the SOD1 could accelerate the invasive and migratory of

pancreatic cancer by the H2O2/ERK/NF-kB axis and regulate the

expression of EMT-related genes (60). Moreover, accumulating

evidence have shown that the expression of SOD1 is significantly

up-regulated in many types of malignant tumors, which may lead to

the deterioration of the disease and poor prognosis by regulating

cell proliferation and oxidative stress (61). As for BNIP3,

demethylation of BNIP3 with a methyltransferase inhibitor

restores gene expression and induces hypoxic-mediated cell death.

We can consider the BNIP3 as a potential target for new therapies

aimed at treating pancreatic cancer (62). And MRPS5 could help in

protein synthesis within the mitochondrion. The knockdown of

MRPS5 obviously could inhibit the pancreatic cell lines

proliferation (63). NMNAT3 might play a positive role in the

immunotherapy treatment of tumors by suppling NAD+

precursors (64). And NDUFB8 participate in the constitute of

mitochondrial respiratory chain complex I. Lots of researches

revealed the NDUFB8 is a potential target in many kinds of

human tumors, such as cervical cancer tissue, gastric cancer,

breast cancer, colorectal cancer, nasopharyngeal carcinoma and

glioblastoma (65–70), nevertheless, no study explored the

relationship between the NDUFB8 and pancreatic cancer. COQ4

is the component of the coenzyme Q biosynthetic pathway, the

COQ4 mutations might lead to early-onset mitochondrial diseases

(71). MRPL14 is part of 2 intersubunit bridges in the assembled

ribosome, which might be involved in the occurrence and

development of thyroid tumors (72). RFK is essential for TNF-

induced ROS production, which can influence the progress of breast

invasive carcinoma and human prostate cancer (71, 73). However,

the role of COQ4, MCRIP2, MRPL50, MRPL14, RFK, and

NMNAT3 in pancreatic tumor has not been reported.

Based on the prognostic signature, we grouped the patients with

PC into high-risk and low-risk categories by using bioinformatics

technology. The findings of KM analysis illustrated that the high-

risk patients exhibited a shorter overall survival compared to the

low-risk patients. Based on the ROC curve, it was determined that

the MTGs-RPS was highly accurate in anticipating 5-year survival

rates. Seventeen different types of drugs were evaluated across both

the training and validation datasets. All 17 drugs were more

effective for the patients with PC in the high-risk subgroup,

which might guide the clinical treatment. The scientificity,

reliability, and precision of MTGs-RPS were confirmed in the

training, internal validation, and external validation sets.
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Independently, our MTGs-RPS was able to predict the prognosis

in PC, hence it may be used as a prognostic marker in PC.

Given the significance of immune infiltration in PC, we

investigated its potential functions in the MTGs-RPS in further

depth. The study indicated that high- and low-risk patients had

different patterns of immune cell infiltration. We discovered that the

high-risk patients had an immunosuppressive phenotype, which is

only accompanied by a multitude of M0 macrophage infiltration;

conversely, the low-risk subgroup was named active anti-tumor

immune with many antitumor immune cells (e.g. CD4+ T cells,

CD8+T cells, B cells). Additionally, the varied clinical results might be

attributed to the varying expression levels of immune checkpoints.

Consider that most PNETs are malignant and more than 60% of

patients have tumor metastasis when diagnosed, which is

accounting for 3%-7% of PC (74, 75), we also explored the

function of MTGs-OS in PNET. Similar as in PC, 226 patients

with PNET were separated into 3 clusters, named C1, C2 and C3.

And patients in C1 and C2 were included in S1 subtype because of

semblable high MTGs-OS scores. Patients in C3 were low MTGs-

OS scores named S2. For patients in S1 represented the high MTGs-

OS scores, the activation of sphingolipid metabolism and inhibition

of B cell and T cell receptor signaling pathway and the high

expression of oncogenes(especially for GNAS, HRAS, PDZRN3,

and SYNE2) were more active than that in S2 subgroup. The results

revealed the activation level of MTGs-OS also play important role in

PNET, which might predict prognosis of patients with PNET

innovatively and precisely in further research. More important,

our findings might provide novel target in the MTGs-OS for tumor

therapy improving the outcomes of patients with PC and PNET.

There are a several limitations that should be mentioned in the

study. Firstly, the novel prognostic model was both constructed and

validated with retrospective data from public. More prospective

real-world data are need to warrant to validate the clinical utility of

the MTGs-RPS. Secondly, further mechanism investigations are

needed to explain the role of the 11MTGs-OS in the occurrence and

progression of PC and PNET. Thirdly, the multi-omics data of PC

and PNET did not provide the clinical information, such as the

tumor recurrence and metastasis data. Neither the classification nor

the MTGs-OS could provide valuable guidance and help for tumor

recurrence and metastasis. Despite the limitations, the advantages

and clinical significance of our results cannot be ignored. Our

research could still provide guidance for MTGs-OS -related basic

research of and clinical treatment of PC and PNET.
5 Conclusion

We systematically investigated the molecular properties of

MTGs-OS and its prognostic potential, given the critical role of

mitochondria and the varied effects of OS and their interplay in PC.

Furthermore, abnormal MTGs-OS activity was linked to the

oncogenesis of PC and PNET in the first place. In addition, the

activation of MTGs-OS served as a protective factor for PC.

Moreover, patients with PC can be classified into three clusters

(i.e. MTGs-OS-normal, MTGs-OS-active, and MTGs-OS-inactive)
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with different characteristics of prognosis, immune characteristics,

and drug sensitivity. And patients with PNET were successfully

stratified into 2 subtypes(S1 and S2). The different characteristics

for expression of oncogenes and tumor suppressor genes and

immune and metabolism pathway between S1 and S2 subtypes

were compared. Finally, we construct a novel MTGs-RPS signature

that provides a superior prognostic prediction for PC patients. In

addition to enhancing the treatment plan, the signature will provide

individual direction for clinical medication use, making it highly

effective for patients with PC. In conclusion, the research might

offer a novel strategy to predict the prognosis provide clinical

guidance for the treatment of PC.
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Glossary

Gene full terms

PDK4 Pyruvate Dehydrogenase Kinase

ALDH1L1 Aldehyde Dehydrogenase 1 Family Member L1

ACACB Acetyl-CoA Carboxylase Beta

EPHX2 Epoxide Hydrolase 2

GATM Glycine Amidinotransferase, Mitochondrial

ACAT1 Acetyl-CoA Acetyltransferase 1

ETFDH Electron Transfer Flavoprotein Dehydrogenase

GLDC Glycine Decarboxylase

ACSF2 Acyl-CoA Synthetase Family Member 2

CYP27A1 Cytochrome P450 Family 27 Subfamily A Member 1

ACSS1 Acyl-CoA Synthetase Short Chain Family Member 1

AKR1B10 Aldo-Keto Reductase Family 1 Member B10

POLG2 DNA Polymerase Gamma 2, Accessory Subunit

NDUFB8 NADH:Ubiquinone Oxidoreductase Subunit B8

MRPS22 Mitochondrial Ribosomal Protein S22

STAB1 Stabilin 1

TENM3 Teneurin Transmembrane Protein 3

PIK3CA Phosphatidylinositol-4,5-Bisphosphate 3-Kinase
Catalytic Subunit Alpha 2

ZFHX4 Zinc Finger Homeobox 4

ADAMTS12 ADAM Metallopeptidase With Thrombospondin Type
1 Motif 12

GLI3 GLI Family Zinc Finger 3

HMCN1 Hemicentin 1

RNF43 Ring Finger Protein 43

PTEN Phosphatase And Tensin Homolog

NDUFA7 NADH:Ubiquinone Oxidoreductase Subunit A7

NDUFA3 NADH:Ubiquinone Oxidoreductase Subunit A3

MMAB Metabolism Of Cobalamin Associated B

MCRIP2 MAPK Regulated Corepressor Interacting Protein 2

COQ4 Coenzyme Q4

UCP2 Uncoupling Protein 2

ACAT1 Acetyl-CoA Acetyltransferase 1

DLAT Dihydrolipoamide S-Acetyltransferase

FTH1 Ferritin Heavy Chain 1

MPV17 Mitochondrial Inner Membrane Protein MPV17

PMAIP1 Phorbol-12-Myristate-13-Acetate-Induced Protein 1

PPTC7 Protein Phosphatase Targeting COQ7

GLDC Glycine Decarboxylase
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SOD1 Superoxide Dismutase 1

MRPL50 Mitochondrial Ribosomal Protein L50

BIK BCL2 Interacting Killer

MRPL14 Mitochondrial Ribosomal Protein L14

RFK Riboflavin Kinase

NMNAT3 Nicotinamide Nucleotide Adenylyltransferase 3

BNIP3L BCL2 Interacting Protein 3 Like

MRPS5 Mitochondrial Ribosomal Protein S5

GNAS GNAS Complex Locus

HRAS HRas Proto-Oncogene, GTPase

PDZRN3 PDZ Domain Containing Ring Finger 3

SYNE2 Spectrin Repeat Containing Nuclear Envelope Protein
2

MTGs mitochondrial genes

OS oxidative stress

PC pancreatic cancer

PAAD pancreatic adenocarcinoma

PNET pancreatic neuroendocrine tumor

MTGs-OS mitochondrial genes related to oxidative stress

MTGs-RPS MTGs-related prognostic signature

mtROS, ROS/RNS reactive oxygen/nitrogen species

MDF mitochondrial dysfunction mitochondrial reactive
oxygen species

DDR DNA damage and repair

MTGs-OS mitochondrial genes related to oxidative stress

TME Tumor microenvironment

OS Overall survival

ssGSEA Single sample gene set enrichment analysis

GSEA Gene set enrichment analysis

GEO Gene Expression Omnibus

GTEx Genotype-Tissue Expression

ICGC International Cancer Genome Consortium

TCGA The Cancer Genome Atlas

GEPIA Gene Expression Profiling Interactive Analysis

FPKM Fragments Per Kilobase Million

TPM Trusted Platform Module

GSVA Gene Set Variation Analysis

IHC immunohistochemistry

qRT-PCR Quantitative real-time PCR
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(ATCC, Manassas,
VA, USA)

The American Type Culture Collection

DMEM Dulbecco's modified Eagle's medium

FBS Fetal bovine serum

IMDM Iscove&rsquo;s Modified Dulbecco medium

HPA Human Protein Atlas

GDSC Genomics of Drug Sensitivity in Cancer

SIRTs Sirtuins

HDACs Histone deacetylases

ICGs immune checkpoints genes

Treg Regulatory T cells

LncRNAs Long non-coding RNAs

Gtf Gene transfer format

LASSO Least absolute shrinkage and selection operator

AUC Area under the curve

ROC Receiver-operating characteristic

TMB Tumor mutation burden

CNV Copy number variations

SNV Single-nucleotide variant

UCEC Uterine corpus endometrial carcinoma

SKCM Skin cutaneous melanoma

STAD Stomach adenocarcinoma

COAD Colon adenocarcinoma

LUSC Lung squamous cell carcinoma

LUAD Lung adenocarcinoma
F
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