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Abstract
In recent years, there have been intensive efforts to establish linearised oscillation results for one-
dimensional delay, neutral delay and advanced impulsive differential equations. An impressive
number of these efforts have yielded fruitful results in many analytical and applied areas. This is
particularly obvious in the areas of applied disciplines such as the linear delay impulsive differential
equations. However, there still remains a lot more to be explored in this direction, especially,
in the area of non-linear autonomous differential equations. In this paper, we are proposing the
development of linearised oscillation techniques for some general non-linear autonomous impulsive
differential equations with several delays.

Keywords: Linearised oscillation; Delay impulsive differential equations.

1 Introduction and Statement of the Problem
Presently, a linearised oscillation theory from which the investigation of the oscillatory behaviour of
the solutions of certain class of non-linear impulsive differential equations can be reduced to that of
the associated linear impulsive differential equations is being intensively investigated and developed.
Precisely, the benefits of such research efforts are already being harnessed in one-dimensional non-
linear impulsive differential equations with single variable and constant delays ([1]).

In this paper, we are proposing the establishment of linearised oscillation techniques for some
general type of non-linear autonomous delay impulsive differential equations defined below.
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Notation 1.1. Let J = (α, β) ⊂ R, −∞ ≤ α < β ≤ ∞ denote the domain of investigation.

Definition 1.1. Let S := {tk}k∈E ⊂ J be a strictly ascending sequence of the time moments of
impulse effects and let E be a subscript set which can be the set of natural numbers IN or the set of
integers Z such that

• tk →∞ if k →∞ and if E = Z then tk → −∞ if k → −∞;

• tk ≥ 0 if k ≥ 0.

Our equation then has the form{
x

′
(t) + f (t, x (t− τ1) , · · · , x (t− τm)) = 0, t ∈ J \ S;

∆x (tk) + g (tk, x (tk − τ1) , · · · , x (tk − τm)) = 0 tk ∈ S,
(1.1)

where τi > 0, 1 ≤ i ≤ m, are constants. This means that the functions f and g are non-linear and
depend, among others, on several constant delays.

In order to simplify the statements of the assertions, we introduce the set of functions PC and
PCr which are defined as follows: Let D := [T, T̄ ) ⊂ J ⊂ R and let the set of impulse points S be
fixed.

Definition 1.2. Let
PC (D,R) := {ϕ | ϕ : D → R, ϕ ∈ C(D \ S), ∃ ϕ(t− 0), ϕ(t+ 0), ∀t ∈ D}.

From the studies in Bainov and Simeonov (1998), Lakshmikantham et al. (1989) and Isaac et al.
(2011) ([1], [4], [2]) we define the function space ∀ r ∈ IN:

Definition 1.3. PCr (D,R) := {ϕ | ϕ ∈ PC (D,R) , d
jϕ

dtj
∈ PC (D,R)), ∀ 1 ≤ j ≤ r, }.

To specify the points of discontinuity of functions belonging to PC or PCr, we shall sometimes
use the symbols PC(D,R;S) and PCr(D,R;S), r ∈ N .

For easy reference in the study, we introduce the following conditions:

C.1.1


f ∈ C [J ×Rm, R] , g ∈ C [S ×Rm, R] , and ∀t ∈ J \ S, ∀tk ∈ S,
f (t, u1, · · · , um) ≥ 0, g (tk, u1, · · · , um) ≥ 0 if ui ≥ 0, 1 ≤ i ≤ m;
f (t, u1, · · · , um) ≤ 0, g (tk, u1, · · · , um) ≤ 0 if ui ≤ 0, 1 ≤ i ≤ m.

There exist Tp ≥ t0 and δ > 0, such that ∀t ∈ J \ S, t ≥ Tp and ∀k ∈ IN, tk ∈ S, tk ≥ Tp,

C.1.2


f (t, u1, · · · , um) and g (tk, u1, · · · , um) are increasing in u1, · · · , um
in the sense that if 0 ≤ u

′
i ≤ u

′′
i ≤ δ, 1 ≤ i ≤ m, then

f
(
t, u

′
1, · · · , u

′
m

)
≤ f

(
t, u

′′
1 , · · · , u

′′
m

)
and

g
(
tk, u

′
1, · · · , u

′
m

)
≤ g

(
tk, u

′′
1 , · · · , u

′′
m

)
.

C.1.3



f (t, u1, · · · , um) ≥
m∑
i=1
pi (t)ui > 0; g (tk, u1, · · · , um) ≥

m∑
i=1
pi0 × ui > 0

for 0 < u1, · · · , um ≤ δ and

f (t, u1, · · · , um) ≤
m∑
i=1
pi (t)ui < 0; g (tk, u1, · · · , um) ≤

m∑
i=1
pi0 × ui < 0

for 0 > u1, · · · , um ≥ −δ.
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or

C.1.4



lim
(u1,··· ,um)→0

ui×uj>0, 1≤i,j≤m

f(t, u1, · · · , um)
m∑
q=1

pq(t)× uq
≡ 1 and

lim
(u1,··· ,um)→0

ui×uj>0, 1≤i,j≤m

g(tk, u1, · · · , um)
m∑
q=1

pq,0 × uq
≡ 1,

where p1, p2, · · · , pm ∈ PC
[
[t0, ∞), R+] and p1,0, p2,0, · · · , pm,0 ∈ R+. Similar to the stability

theory of differential and difference equations ([3], [4], [5]), we shall prove that, with appropriate
hypotheses, the oscillatory behaviour of the non-linear autonomous delay impulsive differential equation
(1.1) is characterized by the oscillatory behaviour of the associated linear differential equation

y
′
(t) +

m∑
i=1
pi (t) y (t− τi) = 0, t ∈ J \ S

∆y (tk) +
m∑
i=1
pi,0 × y (tk − τi) = 0, tk ∈ S,

(1.2)

where pi (t), t ≥ t0 and pi,0 are as defined in conditions C.1.3 and C.1.4.
Recall that in a one-dimensional set up, a non-trivial solution y(t) of a delay impulsive differential

equation is said to be oscillatory if it is possible to choose T ≥ t0 such that for t > T , y(t) is neither
finally positive nor finally negative, where y(t) is

(i) finally positive if there exists T ≥ 0 such that y(t) is defined for t ≥ T and y(t) > 0 for t ≥ T ;

(ii) finally negative if there exists T ≥ 0 such that y(t) is defined for t ≥ T and y(t) < 0 for t ≥ T ([1],
[4], [2]).

All functional inequalities proposed are assumed to hold finally, that is, for all sufficiently large t.

2 Main Results

In this section, we shall state and prove the related oscillatory theorems, but will first establish some
fundamental lemmas.

Lemma 2.1. Suppose that m ≥ 1 and let condition C.1.1 hold. Then every non-oscillatory solution of
equation (1.1) tends to zero as t→∞.

Proof. Let x(t) be a non-oscillatory solution of equation (1.1). We assume that x(t) is finally positive.
The case where x(t) is finally negative is similar and will be omitted. Then finally,{

x
′
(t) = −f (t, x (t− τ1) , · · · , x (t− τm)) ≤ 0, t /∈ S

∆x (tk) = −g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≤ 0, ∀tk ∈ S.
(2.1)

Choose T ≥ t0 such that x (t− τi) > 0 for t > T and 1 ≤ i ≤ m. From equation (2.1), it is clear
that x(t) is decreasing for t ≥ T and so

L = lim
t→∞

x (t)

exists and L ≥ 0.
To complete the proof, we must show that L = 0. For the sake of contradiction, let us assume

that L > 0. Then integrating both sides of equation (1.1) from t0 to∞, we obtain
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L = x(t0)−

 ∞∫
t0

f (s, x (s− τ1) , · · · , x (s− τm)) ds −

−
∑

t0≤tk<∞

g (tk, x (tk − τ1) , · · · , x (tk − τm))

]
which implies lim

t→∞
x (t) = −∞ since M +M0 < 0, where

M =
∞∫
t0

f (s, x (s− τ1) , · · · , x (s− τm)) ds

and
M0 =

∑
t0≤tk<∞

g (tk, x (tk − τ1) , · · · , x (tk − τm)) .

This is a contradiction and hence L = 0. This completes the proof of Lemma 2.1.

Lemma 2.2. Let conditions C.1.1 and C.1.2 be fulfilled. Assume that for t ≥ Tp the inequality{
x

′
(t) + f (t, x (t− τ1) , · · · , x (t− τm)) ≤ 0, t /∈ S

∆x (tk) + g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≤ 0, ∀tk ∈ S
(2.2)

has a finally positive solution x̄ (t) with x̄ (t) ≤ δ. Then equation (1.1) has a finally positive solution
x (t) with x (t) ≤ x̄ (t) for t sufficiently large.

Proof. We begin by using assumption C.1.2 and the condition of the lemma (x̄ (t) ≤ δ, Tp ≤ t ∈ J)
that there is a Tp such that for Tp ≤ T−1 ≤ t ∈ J , 0 ≤ x̄ (t− τi) ≤ δ and 1 ≤ i ≤ m, where T−1 is
defined by

T−1 = t0 −max {τ1, τ2, · · · , τm} . (2.3)

It then follows that
x̄ (t) is strictly decreasing for t ≥ T−1. (2.4)

Consequently, lim
t→∞

x̄ (t) = L ∈ [0, ∞) exists. We integrate both sides of inequality (2.2) from t

to∞ and obtain

L+
∞∫
t

f (s, x̄ (s− τ1) , · · · , x̄ (s− τm)) ds +

+
∑

t≤tk<∞

g (tk, x̄ (tk − τ1) , · · · , x̄ (tk − τm)) ≤ x̄(t), t ≥ Tp. (2.5)

Now, we define the set of functions

θ = {µ ∈ PC [[T−1, ∞) \ S, [0, ∞)] : 0 ≤ µ (t) ≤ x̄ (t) for t ≥ T−1}

and define operator H on θ as

(Hµ) (t) = L+
∞∫
t

F (s, µ) ds +
∑

t≤tk<∞

G (tk, µ) for t ≥ T−1, (2.6)
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where

F (s, µ) = f (s, µ (s− τ1) , · · · , µ (s− τm)) , ∀s ∈ [T−1,∞) \ S and

G (tk, µ) = g (tk, µ (tk − τ1) , · · · , µ (tk − τm)) , ∀tk ∈ S.

Clearly, (Hµ) ∈ PC [[T−1, ∞) \ S, [0, ∞)]. In view of C.1.2, µ1, µ2 ∈ θ with µ1 ≤ µ2 implies
that Hµ1 ≤ Hµ2. Note also that from the inequality (2.5), Hx̄ ≤ x̄. Hence, µ ∈ θ implies that
Hµ ≤ Hx̄ ≤ x̄ and so, we see that H : θ → θ. Next, we define the following sequence in θ:

x0 = x̄ and xn = Hxn−1 for n = 1, 2, · · · .

It is clear, by induction, that

0 ≤ xn (t) ≤ xn−1 (t) ≤ x̄ (t) , t ≥ T−1. (2.7)

Set
x (t) = lim

n→∞
xn (t) , t ≥ T−1. (2.8)

Then, by the continuity of the functions f, g, we see that for t, tk ≥ T−1,

lim
n→∞

f (t, xn (t− τ1) , · · · , xn (t− τm)) = f (t, x (t− τ1) , · · · , x (t− τm))

lim
n→∞

g (tk, xn (tk − τ1) , · · · , xn (tk − τm)) = g (tk, x (tk − τ1) , · · · , x (tk − τm)) ,

∀k ∈ IN.

Also, observe that for t ≥ T−1,

f (t, x (t− τ1) , · · · , x (t− τm)) ≤ f (t, x̄ (t− τ1) , · · · , x̄ (t− τm))

and

g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≤ g (tk, x̄ (tk − τ1) , · · · , x̄ (tk − τm)) ,
∀k ∈ IN

what is more,

f (·, x̄ (· − τ1) , · · · , x̄ (· − τm)) ∈ L1[T−1, ∞),
{g (tk, x̄ (tk − τ1) , · · · , x̄ (tk − τm))}k∈IN ∈ l1.

Therefore, it follows from Lebesgue’s convergence theorem that x(t) satisfies

x (t) = L+
∞∫
t

F (s, x) ds +
∑

t≤tk<∞

G (tk, x) for t ≥ T−1, (2.9)

where

F (s, x) = f (s, x (s− τ1) , · · · , x (s− τm)) and ,∀s ∈ [T−1,∞) \ S;
G (tk, x) = g (tk, x (tk − τ1) , · · · , x (tk − τm))∀tk ∈ S.

From equation (2.9), it is clear that x(t) ∈ PC[[T−1, ∞], R] and piecewise continuously differentiable
on [T−1, ∞). Now, we claim that x(t) is positive in [T, ∞) for sufficiently large T > T−1. In fact, if
T−1 ≤ t < T , by condition (2.4) and the definition of xn (t), it is discovered that

0 ≤ x̄ (t)− x̄ (T ) ≤ xn (t)

which implies that
0 ≤ x̄ (t)− x̄ (T ) ≤ x (t) .
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Next, we show that x(t) is also positive in [T, ∞). First assume that L > 0. Then from equation
(2.9), it is obvious that x(t) > 0. Now, assume that L = 0. Let t̄ = inf {t ≥ T : x (t) > 0}. We claim
that t̄ =∞. Otherwise t̄ ∈ [T, ∞). Hence x(t) > 0 for T−1 ≤ t < t̄ and x̄

(
t̄
)

= 0. But from condition
C.1.1 and equation (2.9), we see that

x(t̄) =
∞∫
t̄

f (s, x (s− τ1) , · · · , x (s− τm)) ds +

+
∑

t̄≤tk<∞

g (tk, x (tk − τ1) , · · · , x (tk − τm)) > 0

and this contradicts our hypothesis and hence establishes our claim. Now, by differentiating both
sides of equation (2.9), we obtain{

x
′
(t) + f (t, x (t− τ1) , · · · , x (t− τm)) ≤ 0, t /∈ S

∆x (tk) + g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≤ 0, ∀tk ∈ S

which implies that x(t) is a positive solution of equation (2.9). Finally, from conditions (2.7) and (2.8),
we see that x (t) ≤ x̄ (t). This completes the proof of Lemma 2.2.

Lemma 2.3. Let us consider the linear autonomous delay differential equations
z

′
(t) +

m∑
i=1

ai(t)z(t− λi) = 0, t /∈ S

∆z(tk) +
m∑
i=1

ai,0z(tk − λi) = 0, ∀tk ∈ S
(2.10)

and 
w

′
(t) +

m∑
i=1

bi(t)w(t− σi) = 0, t /∈ S

∆w(tk) +
m∑
i=1

bi,0w(tk − σi) = 0, ∀tk ∈ S,
(2.11)

where, for each 1 ≤ i ≤ m,{
ai, bi ∈ PC [[t0, ∞) , [0, ∞)] , and λi, σi, ai,0, bi,0 ∈ [0, ∞) ;
lim
t→∞
|t− λi| =∞, lim

t→∞
|t− σi| =∞.

Assume that for each 1 ≤ i ≤ m, the functions ai and bi have the same set of zeros ξi with
multiplicities and

lim
(t→∞
t6=ξi

ai(t)
bi(t)

= 1.

Then every solution of equation (2.10) oscillates if and only if every solution of equation (2.11)
oscillates.

Theorem 2.1. Assume that conditions C.1.1 to C.1.4 are satisfied and suppose that every solution of
the linearised equation (1.2) is oscillatory. Then every solution of equation (1.1) also oscillates.

Proof. Let us assume, for the sake of contradiction, that equation (1.1) has a non-oscillating solution
x(t). We assume that x(t) is finally positive. The case where x(t) is finally negative is similar and
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will be omitted. By Lemma 2.1, we know that lim
t→∞

x (t) = 0. Suppose first, that condition C.1.3 is

satisfied. Then it follows from here and equation (1.1) that
x

′
(t) +

m∑
i=1

pi(t)x(t− τi) ≤ 0, t /∈ S

∆x(tk) +
m∑
i=1

pi,0x(tk − τi) ≤ 0, ∀tk ∈ S.

By Lemma 2.2 (bearing in mind that f (t, u1, · · · , um) ≡ p1 (t)u1+· · ·+pm (t)um and g (tk, u1, · · · , um) ≡
p1,0u1 + · · ·+ pm,0um, we see that equation (1.2) has a finally positive solution. This contradicts our
initial hypothesis and therefore completes the proof of Theorem 2.1 when condition C.1.3 is fulfilled.

Now, let us assume that condition C.1.4 is satisfied. Set
Pi (t) = pi (t) f (t, x (t− τ1) , · · · , x (t− τm))

p1 (t)x (t− τ1) + · · ·+ pm (t)x (t− τm) ;

Pi (tk) = pi,0
g (tk, x (tk − τ1) , · · · , x (tk − τm))
p1,0x (tk − τ1) + · · ·+ pm,0x (tk − τm) .

Then by the hypothesis, Pi (t) ≥ 0, the functions pi and Pi have the same set of zeros ξi with the
same multiplicities and

lim
(t→∞
t6=ξi

pi(t)
Pi(t)

= 1.

Observe that x(t) is a non-oscillatory solution of the equation
x

′
(t) +

m∑
i=1

Pi(t)x(t− τi) =, t /∈ S

∆x(tk) +
m∑
i=1

Pi,0x(tk − τi) = 0, ∀tk ∈ S.

Then, it follows, by Lemma 2.3, that equation (1.2) has a non-oscillatory solution. This contradicts the
hypothesis and thus completes the proof of Theorem 2.1.

Theorem 2.2. Let us assume that there exist an arbitrary positive constant δ, the functions p1, · · · , pm ∈
PC [[t0, ∞), [0, ∞)] and p1,0, · · · , pm,0 ∈ R+ such that either0 < f (t, u1, · · · , um) ≤

m∑
i=1

pi(t)ui; 0 < g (tk, u1, · · · , um) ≤
m∑
i=1

pi,0ui

and f and g are increasing in u1, · · · , um for u1, · · · , um ≤ δ
(2.12)

or 0 > f (t, u1, · · · , um) ≥
m∑
i=1

pi(t)ui; 0 > g (tk, u1, · · · , um) ≥
m∑
i=1

pi,0ui

and f and g are increasing in u1, · · · , um for u1, · · · , um ≥ −δ.
(2.13)

Assume again, that equation (1.2) has a non-oscillatory solution. Then equation (1.1) also has a
non-oscillatory solution.

Proof. We assume that condition (2.12) is satisfied. The proof when condition (2.13) holds is similar
and will be omitted. As the negative solution of equation (1.2) is also a solution, we may assume
that equation (1.2) has a finally positive solution x̄ (t). Choose T ≥ t0 such that x̄ (t− τi) > 0 for
t ≥ T , 1 ≤ i ≤ m. Then from equation (1.2), we see that x̄ (t) is decreasing for t ≥ T and so x̄ (t) is
bounded. Therefore, for M sufficiently large,

x(t) = x̄(t)
M
≤ δ for t ≤ T−1, (2.14)

3074



British Journal of Mathematics and Computer Science 4(21), 3068-3076, 2014

where T−1 is defined by (2.3). Clearly, x(t) is also a positive solution of equation (1.2) for t ≥ T−1.
From equation (1.2) and condition (2.12), it follows that{

x
′
(t) + f (t, x (t− τ1) , · · · , x (t− τm)) ≤ 0, t ≥ T, t /∈ S

∆x (tk) + g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≤ 0, ∀tk ∈ S.
(2.15)

Then by Lemma 2.2, equation (1.1) has a finally positive solution and the proof of Theorem 2.2 is
complete.

Theorem 2.3. Let all the conditions of Theorem 2.2 be fulfilled. Also, let

τi ≥ 0, pi ≥ 0, pi,0 ≥ 0 and pi + pi,0 > 0, 1 ≤ i ≤ m. (2.16)

If all solutions of equation (1.1) are oscillatory, then all the solutions of the linearised equation (1.2)
are also oscillatory.

Proof. Let us assume that condition (2.12) is satisfied. The case when condition (2.13) holds is
similar and is omitted. Let us assume on the contrary, that equation (1.2) has a finally positive
solution y(t). It is clear that

lim
t→∞

y (t) = 0

and hence there exists t0 > 0 such that

0 < y(t) < δ for all t ≥ T−1.

Assuming that y(t) is the initial function for T−1 ≤ t ≤ t0, equation (1.1) has a solution x(t) which
exists at least in some right neighbourhood of the point t0.

Notice that so long as x(t) exists and 0 < x (t) < δ, we discover that
x

′
(t) = −f (t, x (t− τ1) , · · · , x (t− τm)) ≥ −

m∑
i=1

pi(t)x (t− τi)

∆x (tk) = −g (tk, x (tk − τ1) , · · · , x (tk − τm)) ≥ −
m∑
i=1

pi,0x (tk − τi) ,

and thus, in view of Lemma 2.2
y(t) ≤ x(t).

It follows from equation (1.1) that in as much as x(t) exists and remains positive, it is strictly decreasing.
Therefore the inequalities

0 < y(t) ≤ x(t) < δ

hold for all t ≤ t0.
This last statement contradicts the assumption that each solution of equation (1.1) is oscillatory

and this completes the proof of Theorem 2.3.

Observe that Theorem 2.3 is a partial converse of Theorem 2.1. By combining both theorems we
obtain the following linearised oscillation result.

Corollary 2.1.

Corollary 2.1. Assume that conditions C.1.4, (2.12), (2.13) and (2.16) hold. Then every solution of
equation (1.1) oscillates if and only if every solution of its linearised equation (1.2) oscillates.
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3 Summary
The object of investigation in the present paper is the oscillation theory for some general non-linear
autonomous impulsive differential equations with several delays in the form of equation (1.1). We
developed a linearised oscillation theory which is similar to the so-called linearised stability theory of
differential and difference equations.

Roughly speaking, we proved that certain non-linear delay impulsive differential equations have
the same oscillatory character as the associated linear equations.

Sufficient conditions for the oscillation and non-oscillation of the said non-linear delay impulsive
differential equation (1.2) in terms of the oscillation of the solution linear equation are established and
vice versa.

From these results, one can obtain a new linearised oscillation results without the restriction that
the pi,0’s and pi’s in conditions C.1.3 and C.1.4 are all positive constants and functions respectively.
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