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Abstract 
The aim of this paper is to apply Adomian decomposition method (ADM) for 
solving some classes of nonlinear delay differential equations (NDDEs) with 
accelerated Adomian polynomial called El-kalla polynomial proposed by 
El-kalla [1]. The main advantages of El-kalla polynomials can be summarized 
in the following main three points: 1) El-kalla polynomials are recursive and 
do not have derivative terms so, El-kalla formula is easy in programming and 
save much time on the same processor compared with the traditional Adomian 
polynomials formula; 2) Solution using El-Kalla polynomials converges faster 
than the traditional Adomian polynomials; 3) El-Kalla polynomials used di-
rectly in estimating the maximum absolute truncated error of the series solu-
tion. Some convergence remarks are studied and some numerical examples 
are solved using the Adomian decomposition method using the two polyno-
mials (Adomian polynomial and El-kalla polynomial). In all applied cases, we 
obtained an excellent performance that may lead to a promising approach for 
many applications. 
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1. Introduction 

Delay differential equations are frequently used to model real life phenomena in 

How to cite this paper: El-Kalla, I.L., 
Elgaber, K.M.A., Elmahdy, A.R. and Sayed, 
A.Y. (2019) Solution of a Nonlinear Delay 
Differential Equation Using Adomian De-
composition Method with Accelerated For-
mula of Adomian Polynomial. American 
Journal of Computational Mathematics, 9, 
221-233. 
https://doi.org/10.4236/ajcm.2019.94017 
 
Received: September 10, 2019 
Accepted: November 23, 2019 
Published: November 26, 2019 
 
Copyright © 2019 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/ajcm
https://doi.org/10.4236/ajcm.2019.94017
https://www.scirp.org/
https://orcid.org/0000-0002-4268-1399
https://orcid.org/0000-0001-5691-4993
https://doi.org/10.4236/ajcm.2019.94017
http://creativecommons.org/licenses/by/4.0/


I. L. El-Kalla et al. 
 

 

DOI: 10.4236/ajcm.2019.94017 222 American Journal of Computational Mathematics 
 

various fields such as mechanics, computer science, biology and chemistry. Some 
of the recent studies involving delay differential equations include topics as va-
ried as epidemic models that describe the fraction of a population infected by a 
virus [2]. In recent years, many papers were devoted to the problem of approx-
imate solution of the NDDEs [3] [4] [5] [6] [7]. The Adomian decomposition 
method has been shown [8] [9] [10] to solve effectively, easily, and accurately a 
large class of linear, nonlinear, ordinary and partial differential equations with 
approximate solutions which converge rapidly to accurate solutions. Adomian 
decomposition method is a semi-analytical method that was developed from 
1970s to 1990s by George Adomian, chair of the center for applied mathematics 
at the University of Georgia in the USA. Also, Wazwaz discussed the solutions to 
boundary value problems of higher order by the modified decomposition me-
thod [11]. Also, Al-Mazmumy and Al-Malki discussed Some Modifications of 
Adomian Decomposition Methods for Nonlinear Partial Differential Equations 
[12]. The basic motivation of this work is to compare between the solution of the 
NDDEs by the Adomian decomposition method using El-kalla polynomial and 
Adomian polynomial with the exact solution. First, we will talk about the Ado-
mian decomposition method, then we talk about the formulas that calculate the 
two polynomials, then we will talk about the Convergence Remarks of the me-
thod, then we solve some examples to show the importance of the new accele-
rated formula called El-kalla polynomial. 

2. The Method 

First, take a view of the Adomian decomposition method in case of nonlinear 
differential equations which solution contains Adomian polynomial or El-kalla 
polynomial. Using the Adomian decomposition method in case of NDDEs, con-
sider the differential equation 

( ) ( ) ( ) ( )( )( )   , , , 0 1Lu x h x f x u x g u x x= + ≤ ≤            (1) 

where 
d
d

n

nL
x

=  is the highest derivative respect to the variable x, 

( ) ( )( )( ), ,f x u x g u x  is the nonlinear term and ( )h x  is any other terms. We 
will separate the highest derivative on the left side of the equation. Then we take 

1L−  to both sides, where 1L−  is integration from 0 to x. After integration the 
nonlinear term will be the Adomian polynomial term or El-kalla polynomial 
such that: 

( ) ( ) ( ) ( )1 10 .nu x u L h x L A− −= + +                   (2) 

Then Adomian solution assumes that: 

( ) 0 1 2 30  nnu x u u u u u∞

=
= = + + + +∑                 (3) 

( ) ( )
( )

1
0

1
1

0

where 0,1, 2,3,n n

u u L h x

u L A n

−

−
+

= +

= = 



               (4) 
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After making the integration we get the solution, where 0 1 2, , ,A A A   are Ado-
mian polynomials, or we can use the new El-kalla polynomials 0 1 2, , ,A A A   

Adomian polynomial formula 

( )0
0

1 d ,
! d

n
n i

n in iA N u
n =

=

  =    
∑







                 (5) 

where ( )iN u  is the nonlinear term. 
El-kalla polynomial formula 

( ) 1
0 ,n

n n iiA f S A−

=
= −∑                      (6) 

where nA , are El-kalla polynomials, 0 1 2, , ,A A A  , ( )nf S  is the substitution of 
the summation of dependent variable in the nonlinear term. 

For example the Adomian polynomials & El-Kalla polynomials of the nonli-
near term 2y  are showen in Table 1 we can see that the terms using El-Kalla po-
lynomials appear faster than Adomian polynomial. 

Also the nonlinear term 3y  the Adomian polynomials & El-kalla polynomials 
are shown in Table 2 we can see that the terms of El-kalla polynomials appear 
faster than Adomian polynomials. 

3. Convergence Remarks 

Many authors discussed Convergence of the Adomian decomposition method. 
For example, K. Abbaoui and Y. Cherruault [13] [14] [15] proved the conver-
gence of the Adomian method for differential and operator equations. E. Babo-
lian and J. Biazar, contemplate the order of the convergence of the Adomian 
method in [16]. Zhang [17] presented a modified Adomian decomposition me-
thod to solve a class of nonlinear singular boundary-value problems, which arise 
as normal model equations in nonlinear conservative systems. Zhu et al. [18] 
presented a new algorithm for calculating Adomian polynomials for nonlinear 
operators. Also, many modifications were made to this method by numerous re-
searchers in an attempt to improve the accuracy or extend the applications of 
this method [19] [20] [21] [22]. Also, El-Kalla polynomial was discussed by El-Kalla 
In [23] [24] [25] [26] [27], and conclude that El-kalla polynomial was directly 
used to estimate the maximum absolute truncated error of the Adomian series 
solution which cannot be estimated using the traditional polynomials. 
 
Table 1. Adomian polynomials and El-Kalla polynomials of the nonlinear term 2y . 

Adomian polynomials of 2y  El-Kalla polynomials of 2y  

00
2A y=  00

2A y=  

1 0 12A y y=  11
2

0 12A y y y= +  

2
2 0 21 2A y y y= +  

2
2 0 2 1 2 22 2A y y y y y= + +  

3 1 2 0 32 2A y y y y= +  
2

3 0 3 1 3 2 3 32 2 2A y y y y y y y= + + +  

4 1 3 0
2
2 42 2A y y y y y= + +  4 0 4 1 4 2 4 3 4

2
42 2 2 2A y y y y y y y y y= + + + +  
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Table 2. Adomian polynomials and El-kalla polynomials of the nonlinear term 3y . 

Adomian polynomials of 3y  El-kalla polynomials of 3y  

00
3A y=  00

3A y=  

01
2

13A y y=  2 3
1 1 0 1

2
0 13 3A y y y y y= + +  

2
2

2
1 00 23 3A y y y y= +  2 2 2 2 3

2 2 0 0 1 2 0 2 2 1 1 2 23 6 3 3 3A y y y y y y y y y y y y= + + + + +  

3 2
3 1 3 0 0 1 23 6A y y y y y y= + +  

2 2 2
3 3 0 0 1 3 0 2 3 0 3 3 1

2 2 2 3
1 2 3 1 3 3 2 2 3 3

3 6 6 3 3
6 3 3 3

A y y y y y y y y y y y y
y y y y y y y y y y

= + + + +

+ + + + +
 

4. Numerical Examples 
4.1. Example 1 

Consider the nonlinear delay differential equation: 

( ) ( )
2

,
d

1 2 0 0, 0 1
d 2
y x xy y x

x
  = − = ≤ ≤    

               (7) 

We will solve this problem using Adomian decomposition method using Ado-
mian polynomials and El-kalla polynomials. 

4.1.1. Solution by Using Adomian Polynomials 
Let, the solution 

0 1 20 iiy y y y y∞

=
= = + + +∑  ,                   (8) 

( ) 2d
1 2

d 2
y x xy

x
  = −     

                       (9) 

Make integration of both sides from 0 to x, we get: 

( )
2

0
2 d

2
x xy x x y x  = −     
∫                    (10) 

( ) ( ) ( )0 1 2 0
0 1 2

2 d
2 2 2

x x x xy x y x y x x A A A x
      + + + = − + + +      

      
∫  (11) 

( )0y x x=  

( )1 0
0

2 d
2

x xy x A x = −  
 ∫  

( )2 0
1

2 d
2

x xy x A x = −  
 ∫  

( )3 0
2

2 d
2

x xy x A x = −  
 ∫                     (12) 

where the nonlinear term is 
2

2
xy  

    
, we calculate  

0 1 2

, , ,
2 2 2
x x xA A A     

     
     

  from the Equation (5), 
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2

0
4

1
6

2

2 2

2 48

2 1440

x xA

x xA

x xA

   =   
   
  = − 
 
  = 
 



                        (13) 

( )

( )

( )

( )

0
3

1

5

2

7

3

 
6

120

5040

y x x
xy x

xy x

xy x

=

=−

=

= −

                        (14) 

So, the Solution is 

0 1 20 iiy y y y y∞

=
= = + + +∑                    (15) 

3 5 7

6 120 5040
x x xy x= − + − + ,                  (16) 

which leads to the closed form solution: 

( ) ( )siny x x= ,                      (17) 

which equal to the exact solution. 

4.1.2. Solution Using El-Kalla Polynomials 
The solution is the same as before in Equations (8)-(12) except when we calcu-
late El-kalla polynomials we use Equation (6) as follow. 

2

0
2

1 0 1 0

2

2 0 1 2 0 1

2 2

2 2 2 2

2 2 2 2 2 2

x xA

x x x xA y y A

x x x x x xA y y y A A

   =   
   

        = + −        
        

            = + + − −            
            



      (18) 

( )

( )

( )
( )

( )
( )

( )

0
3

1 0
0

5 2

2 0
1

7 8 6 4

3 0
2

7 2

2 d
2 6

5 336
2 d

2 40320

715 443520 112379904
2 d

2 5713316492083200

15006351360 425097953280

5713316492083200

x

x

x

y x x

x xy x A x

x xxy x A x

x x x xxy x A x

x x

=

 = − = − 
 

∗ ∗ − = − = − 
 

∗ ∗ − ∗ + ∗ = − = − 
 

∗ − ∗ +
+

∫

∫

∫

(19) 
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The solution is 

0 1 20 iiy y y y y∞

=
= = + + +∑                     (20) 

In Table 3, we introduce the absolute relative error (ARE) between the Exact 
solution and Solution using El-kalla polynomials. Also, (ARE) between the Exact 
solution and Solution using Adomian polynomials for some values of x in Ex-
ample 1. 

The time elapsed of the program that calculates the solution of Example 1 in 
Matlab R2014a: 

Using Adomian polynomials = 6.3183 seconds; 
Using El-kalla polynomials = 5.6548 seconds; 
This data calculated by taking six terms of the series solution  

0 1 2 3 4 5y y y y y y y= + + + + +  in Example 1 (Figures 1-3). 

4.2. Example 2 

Consider the nonlinear delay differential equation 

( ) ( ) ( ) ( )
23 2

3 2,
d d d1 2 0 0, 0 1, 0 0, 0 1

2 dd d
y x x y yy y x

xx x
  = − + = = = ≤ ≤    

 (21) 

We will solve this problem using Adomian decomposition method using Ado-
mian polynomials and El-kalla polynomials. 

4.2.1. Solution by Using Adomian Polynomials 
Let, the solution 

0 1 20 iiy y y y y∞

=
= = + + +∑  ,                  (22) 

( ) 23

3

d
1 2

2d
y x xy
x

  = − +     
                    (23) 

 

 
Figure 1. Solution using Adomian polynomials, solution using 

El-kalla polynomials and Exact solution of ( ) 2d
1 2

d 2
y x xy

x
  = −     

. 
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Figure 2. The difference between Exact solution and solution us-

ing Adomian polynomials of ( ) 2d
1 2

d 2
y x xy

x
  = −     

. 

 

 
Figure 3. The difference between Exact solution and solution us-

ing El-kalla polynomials of ( ) 2d
1 2

d 2
y x xy

x
  = −     

. 

 
Make integration of both sides from 0 to x, we get 

22

2 0

d 2 d
2d

xy xx y x
x

  = − +     
∫                    (24) 

Make integration of both sides from 0 to x, we get 
22

0 0

d 1 2 d d
d 2 2

x xy x xy x x
x

  = − +     
∫ ∫                  (25) 
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Table 3. The absolute relative error (ARE) between the Exact solution and solution using 
El-kalla polynomials, also between the Exact solution and solution using Adomian poly-
nomials for some values of x in Example 1. 

x 
(ARE) of solution using  
Adomian polynomials 

(ARE) of solution using  
El-kalla polynomials 

0.1 1.60582*10−23 3.44432*10−28 

0.2 1.31530*10−19 2.81772*10−24 

0.3 2.55923*10−17 5.47133*10−22 

0.4 1.07688*10−15 2.29565*10−20 

0.5 1.958*10−14 4.15860*10−19 

0.6 2.09383*10−13 4.42705*10−18 

0.7 1.55232*10−12 3.26462*10−17 

0.8 8.80170*10−12 1.83964*10−16 

0.9 4.06629*10−11 8.43953*10−16 

1 1.598285*10−10 3.29123*10−15 

 
Make integration of both sides from 0 to x, we get 

23

0 0 0
2 d d d

6 2
x x xx xy x y x x x  = − +     
∫ ∫ ∫               (26) 

( ) ( ) ( )0 1 2

3

0 0 0
0 1 2

2 d d d
6 2 2 2

x x x

y x y x y x

x x x xx A A A x x x

+ + +

      = − + + + +      
      

∫ ∫ ∫





     (27) 

( )

( )

( )

( )

3

0

1 0 0 0
0

2 0 0 0
1

3 0 0 0
2

6

2 d d d
2

22 d d d
2

2 d d d
2

x x x

x x x

x x x

xy x x

xy x A x x x

xy x A x x x

xy x A x x x

= −

 =  
 

 =  
 

 =  
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫


                (28) 

where the nonlinear term is 
2

2
xy  

    
, we calculate 

0 1 2

, , ,
2 2 2
x x xA A A     

     
     

   

from the Equation (5) 
23

0

3 4
5 2

1

2
2 2 6

5 144 24192
48 2 16

2 46448640

x
x xA

x x xx x
xA

        = −    
  
 

   
− + − +   

    

∗
∗ ∗ ∗

= 
 



       (29) 
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( )

( )
( )

( )
( )

3

0

5 4 2

1

9 6 4 2

2

6
5 576 24192

2903040
55 42420 13418496 553512960

535623421132800

xy x x

x x x
y x

x x x x
y x

= −

∗ ∗ − ∗ +
=

∗ ∗ − ∗ + ∗ −
= −

   (30) 

So, the Solution is 

( )

( )

0 1 20

5 4 23

9 6 4 2

5 576 24192

6 2903040
55 42420 13418496 553512960

 
535623421132800

iiy y y y y

x x xxx

x x x x

∞

=
= = + + +

∗ ∗ − ∗ +
= − +

∗ ∗ − ∗ + ∗ −
− +

∑ 



   (31) 

which leads to the closed form solution 

( ) ( )siny x x= ,                           (32) 

which equal to the exact solution. 

4.2.2. Solution Using El-Kalla Polynomials 
The solution is the same as before in Equations (22)-(28) except when we calcu-
late El-kalla polynomials as follow: 

23

0

2

1 0 1 0

2

2 0 1 2 0 1

2
2 2 6

2 2 2 2

2 2 2 2 2 2

x
x xA

x x x xA y y A

x x x x x xA y y y A A

  
      = −    
  
 

        = + −        
        

            = + + − −            
            



       (33) 

( )

( )
( )

( )

3

0

5 4 2

1 0 0 0
0

2 0 0 0
1

6
5 576 24192

2 d d d
2 2903040

2 d d d
2

x x x

x x x

xy x x

x x xxy x A x x x

xy x A x x x

= −

∗ ∗ − ∗ + = = 
 

 =  
 

∫ ∫ ∫

∫ ∫ ∫


    (34) 

The solution is 

( )
0 1 20

5 4 23 5 576 24192

6 2903040

iiy y y y y

x x xxx

∞

=
= = + + +

− +
= −

∗
+ +

∗ ∗

∑ 



            (35) 
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In Table 4, we introduce the absolute relative error (ARE) between the Exact 
solution and Solution using El-kalla polynomials. Also, (ARE) between the Exact 
solution and Solution using Adomian polynomials for some values of x in Ex-
ample 2. 

The time elapsed of the program that calculate the solution of Example 2 in 
Matlab R2014a: 

Using Adomian polynomials = 11.8629 seconds; 
Using El-kalla polynomials = 6.5055 seconds;  
This data calculated by taking three terms of the series solution  

0 1 2y y y y= + +  in Example 2 (Figures 4-6). 

 

 
Figure 4. Solution using Adomian polynomials, solution using 
El-kalla polynomials and Exact solution of  

( ) 23

3

d
1 2

d 2
y x xy
x

  = − +     
. 

 

 
Figure 5. The difference between Exact solution and solution us-

ing Adomian polynomials of ( ) 23

3

d
1 2

d 2
y x xy
x

  = − +     
. 
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Figure 6. The difference between Exact solution and solution us-

ing El-kalla polynomials of ( ) 23

3

d
1 2

d 2
y x xy
x

  = − +     
. 

 
Table 4. The absolute relative error (ARE) between the Exact solution and solution using 
El-kalla polynomials, also between the Exact solution and solution using Adomian poly-
nomials for some values of x in Example 2. 

x 
(ARE) of solution using  
Adomian polynomials 

(ARE) of solution using  
El-kalla polynomials 

0.1 8.13863*10−24 2351693*10−25 

0.2 6.66554*10−20 1924773*10−21 

0.3 1.29671*10−16 3.74036*10−19 

0.4 5.45508*10−16 1.5711*10−17 

0.5 9.91548*10−15 2.8501*10−16 

0.6 1.05994*10−13 3.03934*10−15 

0.7 7.85472*10−13 2.24589*10−14 

0.8 4.45139*10−12 1.26858*10−3 

0.9 2.05531*10−11 5.83546*10−13 

1 8.07337*10−11 2.28259*10−12 

5. Discussions 

From all the previous examples, we extract that the solution of NDDEs by using 
the Adomian decomposition method with the new polynomial, El-kalla poly-
nomial, which is faster and more accurate than using it with the traditional po-
lynomial called Adomian polynomial. Also the formula that calculates El-kalla 
polynomial is simple, but the formula that calculates Adomian polynomial has a 
derivative term that takes time in calculations. It is clear that the time elapsed in 
the program that calculates the solution using El-kalla polynomial is less than 
the time elapsed in the program that calculates the solution using Adomian po-
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lynomial that means saving time in Matlab R2014a. Also, the maximum absolute 
relative error between the solution using El-kalla polynomial and the exact solu-
tion is less than the maximum absolute relative error between the solution using 
Adomian polynomial and the exact solution. And thus El-kalla polynomial can 
be used in solving a wide range of a nonlinear differential equation in many ap-
plications. 
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