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Abstract 
 

The goal of this paper is the geometrical and numerical study of the main sizes of the mathematical 
models of prey-predator interactions which are important in determining long-time dynamics, based on 
the application of various notions from the theory of dynamical systems to the numerical approximation 
of initial value problems over long-time intervals.  The numerical methods are widely used for the study 
of complicated temporal behavior of dynamical systems, in order to approximate different types of 
invariants sets or invariant manifolds and also to extract statistical information on the dynamical behavior 
in the computation of natural invariant measures or almost invariants sets. The present study is a interplay 
between dynamical systems geometrical theory and computational calculus of dynamical systems, 
knowing that the theory provides a framework for interpreting numerical observations and foundations 
for efficient numerical algorithms. 

 

Keywords: Hamilton-Poisson realization; conservation law; Volterra-Lotka equations; Runge-Kutta 
method. 

 

1 Introduction  
 
This paper is devoted to studying conservation laws for Volterra-Lotka type systems arising from biology 
and relationship between this in the geometric framework of Classical Mechanics. The Lotka-Volterra model 
indeed may be the simplest possible predator-prey model. Nevertheless, it is a useful tool containing the 
basic properties of the real predator-prey systems, and serves as a robust basis from which it is possible to 
develop more sophisticated models. The Lotka-Volterra model is very important in population modeling.  
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The viewpoint is geometric and we also compute and characterize objects of dynamical significance, in 
order to understanding the mathematical properties observed in numerical computation for dynamical 
systems. 
 
We will present two very important examples. First example represent so called variational dynamical 
systems, that is dynamical systems described by a system of ordinary differential equations which can be 
written as the Euler-Lagrange equations associated to Lagrangian L,  
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This example is the 2D prey-predator Lotka-Volterra system [1-4]. This dynamical systems are included in 

the presymplectic case because the 2-form L associated to the corresponding Lagrangian is degenerate [1]. 

Finally, we present different versions of the well-known prey-predator 3D Lotka-Volterra system. This 
system is not a variational dynamical system. However, we can give more Hamilton-Poisson realizations of 
this bi-Hamiltonian system like in the 2D case [2,5-7]. 
 

2 The 2D Lotka-Volterra System  
 
Let us consider the system of ordinary differential equations [8,9]: 
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This system is called Lotka-Volterra system and represents a complex biological system model, in which two 
species x  and y  live in a limited area, so that individuals of the species y  (predator) feed only individuals 

of species x  (prey) and they feed only resources of the area in which they live. Proportionality factors a  
and c  are respectively increasing and decreasing prey and predator populations. If we assume that the two 

populations come into interaction, then the factor b is decreasing prey population x  caused by this predator 

population y  and the factor d  is population growth due to this population x . The evolution system (2) can 

be written in the form of Euler-Lagrange equations (1), where the Lagrangian L is 
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 and the corresponding Hamiltonian H  is  
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Let us remark that the total energy HEL    is a conservation law for prey-predator system (2) and the 

Lagrangian L  is singular.  
 

According to [2] and [7] the Lotka-Volterra equations (2) has the following Hamilton-Poisson realization  

HJxi  , where bydxyaxcH  lnln  is the Hamiltonian and 
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Poisson bracket.  
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3 The 3D Lotka-Volterra System  
 
In [5] and [7] was discussed the next three-dimensional Lotka-Volterra system which models the evolution 
of competition between three species:  
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where .0,,,,,  Rcba  

 

Following [5], if 1abc  and abb   , then the 3D Lotka-Volterra  system (3) admit two 

conservation laws zybxabH lnlnln1  and zyazyabxH lnln2   , because  (3)  

is a particular  case of a bi-Hamiltonian system.  The dynamics of (3) has two distinct Hamilton-Poisson 

realizations 21 HJxi  and 12 HJxi  , where   
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From 011 HJ  and 022 HJ we have that 1H , 2H  are Casimir functions of 1J , 2J ,  ([9]). 

 

4 A Numerical Study   
 
Numerical integration is a important, actual and active subject due to the today high computer efficiency 
(speed and memory), being analysed by extensive theory and a vast range of software, platforms or libraries, 
[10-13]. Taking into account that even for the simplest 2D Lotka-Volterra system, the analytical solution is 
useless: root of a polynomial with an integral plus the special function Lambert [14,15], we must resort to 
numerical methods in order to have information about the trajectories. Thus, constructing a Matlab-based 
numerical code, we approximate and characterize different types of invariants and also extract information 
on the dynamical behavior and perform comparisons for both different initial conditions associated to the 
considered problem and for different values of the parameters. In the first stage we focus on the numerical 
solving of the initial value problems by appropriate numerical methods, such as Runge-Kutta methods (for 
the 2D case we use a fourth order Runge-Kutta method [16,17] and for the 3D case we used a fifth order 
Runge-Kutta method, [18].   
 
The Runge-Kutta mid-point method for differential equations solves  
 

y' = f(y, t),   y(a) = A 
 
for a<t<b by setting  
 

, ,  

 

and iteratively solving  
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 for i<N, to estimate the solution over the interval. 
 
The most used type is Runge-Kutta-Fehlberg (rkf45) method, since it has a good adaptive numeric procedure 
for solving the initial value problem .  It combines fourth-order and fifth-order 

Runge-Kutta techniques to monitor error and effect a dynamic step reduction strategy with only two function 
evaluations more than is used in the fixed-step fourth-order Runge-Kutta method.  A naive use of the fourth-

order version with step sizes of  and  to monitor error would require 4 + 7 = 11 function evaluations at 

each step [17]. 
 
The Runge Kutta method presented above can be easily extended to systems of differential equations. Let us 
consider the following system: 
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We search for the solution satisfying the initial conditions 
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Applying 4th order Runge Kutta method, we get the solution at the step i+1 with the formulas: 
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The corrections ∆yn,i  from the above relations are calculating with the relations: 
 

kkkk

kkkk

kkkk

nnnn
in

i

i

y

y

y

4321,

2
4

2
3

2
2

2
1,2

1
4

1
3

1
2

1
1,1

6

1

3

1

3

1

6

1

...........................................................

6

1

3

1

3

1

6

1

;
6

1

3

1

3

1

6

1







 

 

and the coefficients kkkkkkk
nn
41

2
4

2
1

1
4

1
2

1
1 ...,...,,...,,...,,,  have the following form: 

 



 
 
 

Ionescu et al.; BJMCS, 10(5): 1-15, 2015; Article no.BJMCS.19270 
 
 
 

5 
 
 

 

;,...,2,1,
2

...,,
2

,
2

;,...,2,1,...,,,

1
,

1
1

,12

,,11

njyy
h

xfh

njyyxfh

kk
k

k
n

iniij
j

iniij
j



















 

 

  .,...,2,1,...,,,

;,...,2,1,
2

...,,
2

,
2

3,
1
3,14

2
,

1
2

,13

njyyhxfh

njyy
h

xfh

kkk

kk
k

n
iniij

j

n

iniij
j



















 

 
Of course a higher order algorithm would produce a better accuracy [17].  
 
We obtain the numerical solution represented by the approximate values of the solution function for a 
discrete set of data points. Using this approach we perform a numerical analysis of the conservation laws and 
main sizes. 
 

4.1 2D Lotka-Volterra System 
 
For different values of the parameters and for different initial conditions we represent the profil of the 
numerical solution, the phase space portrait and the profil of the Lagrangian and Hamiltonian functions.  
 

 
 

 
 

Fig. 1. Profile of the numerical solution (x(t), y(t)), for  a = b = c = d = 1 and initial conditions  
 (x0 = 0.5, y0 = 0.5) and  (x0 = 0.95, y0 = 0.95) 
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Fig. 2. Profile of the numerical solution  (x(t), y(t)), for  a = 0.5, b = c = d = 1 and initial conditions (x0 
= 0.5, y0 = 0.5),   (x0 = 0.95, y0 = 0.95) 

 

 
 

Fig. 3. Phase space portrait for a = 0.5, b =c = d = 1 and initial conditions (x0 =0.35, y0 = 0.35), (x0 = 
0.5, y0 = 0.5), (x0 =0.95, y0 = 0.95) listed in order from outermost trajectory to innermost trajectory 

 

 
 

Fig. 4. Phase space portrait for a = 0.5, b =c = d = 1 and initial conditions (x0 =0.35, y0 = 0.35), (x0 = 
0.5, y0 = 0.5), (x0 =0.95, y0 = 0.95) listed in order from outermost trajectory to innermost trajectory 
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Fig. 5. The profile of the Hamiltonian H as function of t, for a = 0.5, b = c = d = 1 and initial conditions 

(x0 = 0.5, y0 = 0.5), and  (x0 = 0.95, y0 = 0.95) respectively 
 

 
 

 
 
Fig. 6. The profile of H(x, y) for a = 0.5, b =c = d = 1 and initial conditions (x0 = 0.5, y0 =0.5),  and (x0 

= 0.95, y0 = 0.95) respectively 
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Fig. 7. Some level curves of  H(x, y) for a = b = c = d = 1 and initial conditions  (x0 = 0.5, y0 = 0.5),  and 
(x0 = 0.95, y0 = 0.95) respectively 

 

 
 

 
 

Fig. 8. The profile of the Lagrangian L as function of t for a = 0.5, b = c = d = 1 and initial conditions 
(x0 = 0.5, y0 = 0.5),  and  (x0 = 0.95, y0 = 0.95) respectively 
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Fig. 9. The profile of L(x, y) for a = 0.5, b =c = d = 1 and initial conditions (x0 = 0.5, y0 = 0.5) and   
(x0 = 0.95, y0 = 0.95)  respectively 

 

4.2 3D Lotka-Volterra System 
 
We consider the case 1abc , abb   .  We set 1 cba  and  ,1  0 , 1  

 

 
 

Fig. 10. The profile of the numerical solution (x(t), y(t), z(t)), for the initial conditions  
 (x0 = 0.5, y0 = 1, z0 = 2) 

 



 
 
 

Ionescu et al.; BJMCS, 10(5): 1-15, 2015; Article no.BJMCS.19270 
 
 
 

10 
 
 

 
 

Fig. 11. Phase space portrait for the initial conditions (x0 = 0.5, y0 = 0.95, z0 = 2.95),  (x0 = 0.5, y0 = 
0.5), z0 = 1.95),  (x0 = 1, y0 = 0.75, z0 = 1.25),  (x0 = 2.1, y0 = 0.35, z0 = 1.55)  listed in order from 

outermost trajectory to   innermost trajectory 
 

 
 

Fig. 12. Phase space for the initial conditions (x0 = 1, y0 = 0.25, z0 = 2.5) The numerical solution 
presents a graphical profile given by downward spirals 

 

 
 

Fig. 13. The profile of the Hamiltonian H1 as a function of t, for the initial conditions   
(x0 = 2.1, y0 = 0.35, z0 = 1.55) 
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Fig. 14. The profile of the Hamiltonian H1 as a function of (t, x), (t, y) and (t, z), and for the initial 
conditions (x0 =2.1, y0 = 0.35, z0 = 1.55). 

 

 
 

Fig. 15. The profile of the Hamiltonian H1 as a function of (x, y), (x, z) and (y, z), for the initial 
conditions (x0 = 2.1, y0 = 0.35, z0 = 1.55) 

 

 
 

Fig. 16. The profile of the Hamiltonian H2 as a function of t, for the initial conditions  
(x0 = 2.1, y0 = 0.35, z0 = 1.55) 
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Fig. 17. The profile of  the Hamiltonian H2 as a function of (t, x), (t, y) and (t, z) , for the initial 
conditions (x0 = 2.1, y0 = 0.35, z0 = 1.55). 

 

 
 

Fig. 18. The profile of the Hamiltonian H2 as a function of (x, y), (x, z) and (y, z), for the initial 
conditions (x0 = 2.1, y0 =0.35, z0 = 1.55) 

 

5 Results and Discussion 
 
The predator population begins to decline shortly after the prey population starts to decrease. Then after the 
prey population begins to recover, the predator population also starts to recover [3,4], [19-21]. They share a 
common period. 
 

The total energy H  takes constant values for different values of parameters a, b, c, d and different initial 
conditions, as we presented in Fig. 5 and Fig. 6. Thus we are in agreement with the property to be a 
conservation law. 
 
In the 3D case displaying the graph of x, y and z across time t, one observes the periodic behavior of the 
system.  Each predator population also peaks and then begins to decrease shortly after its respective prey 
population peaks and begins to decrease.  
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The two Hamiltonians 1H , 2H  associated to the 3D case of Lotka-Volterra system are characterized 

through our numerical study by constant values, for different initial conditions, as we presented in            
Figs. 13-18. 
 

 
 

Fig. 19. Profile of the numerical solution for one prey and one predator    
 

 
 

 Fig. 20. Profile of the numerical solution for one prey and two predators    
 

6 Conclusion 
 
In this paper we made a computational analysis of the mathematical models of interactions between 2 or 3 
species, in order to approximate different types of invariants and main sizes, starting from certain initial 
value problems associated to these models. Moreover, we obtain the numerical solution and we develop the 
numerical characterization of the invariants given by the geometrical formalism. Thus, we can make 
different comparisons between these studied quantities for different values of parameters, for different initial 
conditions. So, this study is very useful  to make certain adjustments for the parameters involved in the 
equations of the system associated to the model, in order to improve the analyze of the evolution of the 
populations of prey and predator.  
 

7 Remark 
 
Some part of this manuscript was previously presented and published in the Conference “The VIII-th 
International Conference of Differential Geometry and Dynamical Systems (DGDS-2014)”, September 1-4, 
2014, Mangalia, Romania, http://www.mathem.pub.ro/proc/bsgp-22, [21]. 
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