17(2): 1-8, 2016, Article no.BJMCS.27014 *ISSN: 2231-0851*

SCIENCEDOMAIN *international*

www.sciencedomain.org

Separation Axioms in Generalized Base Spaces

[Kamal El-Saady](www.sciencedomain.org)¹ **and Fatima Al-Nabbat**² *∗*

¹*Department of Mathematics, Faculty of Science at Qena, South Valley University, Qena 83523, Egypt.* ²*Department of Mathematics, College of Science, King Faisal University, Al-Hasa, 31982, P.O.Box 380, Saudi Arabia.*

Authors' contributions

This work was carried out in collaboration between two authors. Author KE designed the study, wrote the protocol, and managed literature searches. Author FA managed the analyses of the study and wrote the first draft of the manuscript. Both authors read and approved the final manuscript.

Article Information

[Received: 15](http://sciencedomain.org/review-history/14973)th May 2016 Accepted: 6th June 2016

DOI: 10.9734/BJMCS/2016/27014 *Editor(s):* (1) Metin Basarir, Department of Mathematics, Sakarya University, Turkey. *Reviewers:* (1) Alaa Mohamed Abd El-latif, Ain Shams University, Cairo, Egypt. (2) W. Obeng-Denteh, KNUST, Ghana. Complete Peer review History: http://sciencedomain.org/review-history/14973

Original Research Article Published: 10th June 2016

Abstract

The concept of generalized base space is given as a generalization of closure spaces, kernel spaces, topological spaces. The purpose of this paper is to study and investigate some separations axioms in the so-called generalized base spaces. Some characterizations of *GBTi*-spaces for $i = 0, 1, 2, 3, 4$ are obtained and some relations among these spaces are established. We study some results concerning separation axioms which are true in general topology, but it is not true in the generalized base spaces.

Keywords: Generalized topologies; weak structures; separation axioms.

2010 Mathematics Subject Classification: 18B35, 03G10, 06A12, 06D50, 54H10.

^{}Corresponding author: E-mail: fatima−math20@yahoo.com;*

1 Introduction

The study of more general structures than that of topological space has taken several directions over the past thirty years. In 1983, Mashhour et al [1] introduced the concept of supra-topology by dropping only the intersection condition. In 1996, Maki [2] studied minimal structures, or shortly m-structures, on a set *X*, as a collection of subsets of *X* containing *X* and the empty set, with no other restriction. Since 1997, Csàszàr has studied topological notions in collections which are closed under unions [3]. They constitute the well-known generalized topologies. As a natural generalization of the above-mentioned structures, in [20](#page-7-0)11, Csàszàr $[4]$ also introduced the weak structures, which are collections of subsets of *X* containing the [em](#page-7-1)pty set. The weak structure is weaker than each of supra-topology [1], generalized topology [3] and a minimal structure [2, 5]. In addition, the interior and closure operators are introduced within this new context and some important properties of t[he](#page-7-2)se operations are studied. Many authors c[har](#page-7-3)acterized some topological notions in such weak structures (see [6]-[12]).

In 2004, Erné [13] proposed, in a [co](#page-7-0)mpletely different conte[xt](#page-7-2), the so-called base spaces [a](#page-7-1)[s](#page-7-4) a generalization of closure spaces, kernel spaces, topological spaces etc. by means of base structures, which are collections of subsets of *X* [wi](#page-7-5)t[h n](#page-7-6)o other restriction.

In 2012, Ávila and Molina $[14]$ defined generalized weak structures (which is the Erné's base structures [13]) [as a](#page-7-7)n extension of Csàszàr's weak structures. For them, interior, closure and other related notions are introduced.

In this paper, we aim to continue the study on the notions of base space (or generalized base spaces in this paper) and characteriz[e s](#page-7-8)ome of its separation axioms. Through this paper we point out a mistake in [\[14](#page-7-7)].

2 Preliminaries

To begin wi[th](#page-7-8) the simplest definition, we mean by a generalized base structure (base structure in [13] or generalized weak structures in [14]) a subset M of the power set 2^X of a non-empty set *X*. The pair (X, \mathcal{M}) is called a generalized base space. If we regard $\mathcal M$ as an open base structure then, we can regard $\mathcal{M}^c = \{X \setminus B : B \in \mathcal{M}\}\$ as a closed base structure. The elements of \mathcal{M} (resp., \mathcal{M}^c are said to be \mathcal{M} -open (resp., \mathcal{M} -closed).

[De](#page-7-7)finition 2.1. A generalized base str[uct](#page-7-8)ure $\mathcal{M} \in 2^X$ is called:

- (i) a weak structure [4] if it satisfies the condition:
	- $(W S) \phi \in \mathcal{M}$,
- (*ii*) a minimal structure [2] if it is a weak structure and satisfies the condition:

 (MS) $X \in \mathcal{M}$;

(*iii*) a generalized topology [3] if it is a weak structure and satisfies the condition:

 (GT) (GT) \forall *A*_{*i*} \in *M* (*i* \in *I*) implies $\cup_i A_{i \in I}$ \in *M*;

- (*iv*) a supra-topology [1](or strong generalized topology in [15]) if it is a generalized topology with $X \in \mathcal{M}$;
- (v) a quasi-topology [16, 17] if it is a generalized topology and satisfies the condition:

 (QT) if $A, B \in \mathcal{M}$ [im](#page-7-0)plies $A ∩ B \in \mathcal{M}$.

It is obvious from the definition that each topology, quasi-topology, supra-topology, generalized topology, minimal structure and weak structure are generalized base structures.

As in the usual setting of topology, an (M_1, M_2) -*continuous map* [13] between generalized base spaces (X, \mathcal{M}_1) and (Y, \mathcal{M}_2) is a function $f : X \longrightarrow Y$ with $f^{\leftarrow}(G) \in \mathcal{M}_1$ if $G \in \mathcal{M}_2$. Where, $f^{\leftarrow}(G)$ designates preimage of *G* under the map *f*.

The category of all generalized base spaces as objects and all $(\mathcal{M}_1, \mathcal{M}_2)$ $(\mathcal{M}_1, \mathcal{M}_2)$ $(\mathcal{M}_1, \mathcal{M}_2)$ -continuous maps as morphisms will be denoted by **GBS**.

A generalized base space (X, \mathcal{M}) is said to be GBT_0 [13] if for any pair of distinct points $x, y \in X$, there exists $B \in \mathcal{M}$ with $x \in B \not\ni y$ or $y \in B \not\ni x$.

For a generalized base structure $\mathcal{M} \subset 2^X$, the generalized interior and closure [14, 18] of a subset $A \subseteq X$ are defined by

$$
i_{\mathcal{M}}(A) = \bigcup \{ G \in \mathcal{M} : G \subset A \}
$$

and

$$
c_{\mathcal{M}}(A) = \bigcap \{ F \in \mathcal{M}^c : A \subset F \}
$$

respectively.

Lemma 2.1. [14, 18] The operation $i_{\mathcal{M}} : 2^X \longrightarrow 2^X$ fulfils

- *(1)* $A ⊆ B ⊆ X$ *implies* $i_M(A) ⊆ i_M(B)$ *for* $A, B ⊆ X$ *;*
- *(2)* $i_M(A) ⊆ A$ *for* $A ⊆ X$ *;*
- (3) $i_M(i_M(A)) = i_M(A)$ for $A \subseteq X$.

Lemma 2.2. [14, 18] For the map $c_M: 2^X \longrightarrow 2^X$, we have

- *(1) A* ⊆ *B* ⊆ *X implies* $c_M(A) ⊆ c_M(B)$ *for* $A, B ⊆ X$ *;*
- *(2) A* ⊆ $c_M(A)$ *for A* ⊆ *X;*
- (3) $c_M(c_M(A)) = c_M(A)$ *for* $A \subseteq X$ *.*

As in general topology, by *A*^{\prime} we mean the set of all accumulation points of a subset $A \subseteq X$. i.e., the set of all points $x \in X$ such every $G \in \mathcal{M}$ containing *x* satisfies $(G \setminus \{x\}) \cap A \neq \emptyset$.

Proposition 2.1. $[14]$ Let \in M be a generalized base structure on a non-empty set X. The *following properties hold:*

- *(1) If A* \in *M*, *then i*_{*M*}(*A*) = *A.*
- *(2) If* $A \in \mathcal{M}^c$, *t[hen](#page-7-8)* $c_{\mathcal{M}}(A) = A$ *and* $A' \subset A$ *.*

Conversely $A = i_{\mathcal{M}}(A)$ does not imply $A \in \mathcal{M}$, $A = c_{\mathcal{M}}(A)$ does not imply $A \in \mathcal{M}^c$ and $A' \subset A$ does not imply $A \in \mathcal{M}^c$:

Proposition 2.2. *[14] Let* M *be a generalized base structure on a non-empty set* X *. For* $A \subseteq X$ *, we have* $A' \cup A \subset c_{\mathcal{M}}(A)$ *.*

3 On Generalized Base Spaces

In topological setting, we know that a subset is open if and only if its a neighborhood of each of its points. This fact is not completely true in the generalized base setting. To assert that, we give the following:

Definition 3.1. Let (X, \mathcal{M}) be generalized base space. A subset *B* of *X* is said to be an *M*neighborhood or simply a neighborhood of a point $x \in X$ iff there exists $V \in \mathcal{M}$ such that $x \in V \subset$ *B*.

Proposition 3.1. *If* $B \in \mathcal{M}$ *, then it is a neighborhood of each of its points.*

The converse of the above proposition need not be true.

Example 3.1. Let $\mathcal{M} = \{\{a\}, \{b\}, \{c\}\}\$ be an open base structure on $X = \{a, b, c\}$. It is clear that *X is a neighborhood of each of its point but not M-open.*

In [[14], Proposition 9 (4)], it is claimed that $A' \cup A = c_{\mathcal{M}}(A)$, for a subset $A \subseteq X$, where M is a generalized week structure on *X*. The first part is correct (see **Proposition 2.2**) but the converse is not true in general. The following is a counterexample.

Example 3.2. Let $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a, b\}, \{b, c\}, \phi\}$. For a subset $A = \{b\}$ one have $c_{\mathcal{M}}(A) = X$ $c_{\mathcal{M}}(A) = X$ $c_{\mathcal{M}}(A) = X$ and $A' = \{a, c\}$, so $A \cup A' = \{a, b, c\} \subset X$ $A \cup A' = \{a, b, c\} \subset X$ $A \cup A' = \{a, b, c\} \subset X$ and therefore $A' = \{a, b, c\} \neq c_{\mathcal{M}}(A)$.

The above example shows that $A \cup A' \neq c_M(A)$ in general. Also, we can assert that the set $A \cup A'$ is not closed for some $A \subset X$.

Example 3.3. Let $X = \{a, b, c\}$ and $\mathcal{M} = \{\{a, b\}, \{a, c\}, \{b, c\}\}\$. For a subset $A = \{a, b\}$ one have $A^{'} = \{c\}$ and therefore $A \cup A^{'} = X$ which is not closed since $X^{c} = \phi \notin \mathcal{M}$.

Now, we introduce the easily established result:

Proposition 3.2. *For* $A, B \subseteq X$ *, and* (X, \mathcal{M}) *be a generalized base space, then*

(1) $c_M(A) \cup c_M(A) \subset c_M(A \cup B)$. $(A^{(2)} \cup B^{'} \subset (A \cup B)^{'}).$

Although the converse of **Proposition 3.2** is true in topological setting, it is need not true in generalized base space setting. The following is a counterexample.

Example 3.4. Let $X = \{a, b, c\}$ and $\mathcal{M} = \{\{a, b\}, \{a, c\}, \{b, c\}, \phi\}$. For $A = \{a\}$ and $B = \{b\}$ one have $c_M(A) = \{a\}$, $c_M(B) = \{b\}$, a[nd](#page-3-0) $c_M(A \cup B) = c_M\{a,b\} = X$. Also, $A' = \phi = B'$, and $(A \cup B)' = \{a, b\}' = \{c\}$ *. So*

- *(1)* $c_M(A \cup B) \neq c_M(A) \cup c_M(A)$.
- $(A^{(2)} \cup B^{'} \neq (A \cup B)^{'}).$

4 Separation Axioms

As we have seen in the previous sections, the concept of a generalized base space (X, \mathcal{M}) , without any restrictions, is too general for many purposes. In this section some restrictions, called separation axioms, imposed on generalized base spaces and some of their properties and implications are considered.

Definition 4.1. A generalized base space (X, \mathcal{M}) is called:

- (1) *GBT*₁ if for any pair of distinct points $x, y \in X$, there exist $A, B \in \mathcal{M}$ with $x \in A \not\ni y$ and $y \in B \not\ni x$.
- (2) *GBT*₂ if for any pair of distinct points $x, y \in X$, there is a disjoint *M*-open sets *A* and *B* with $x \in A$ and $y \in B$.

Remark 4.1*.* If (X, \mathcal{M}) is *GBT*_{*i*}, then it is GBT_{1-1} , $i = 1, 2$.

Example 4.1. *Let* $X = \{a, b, c\}$ *and*

- (1) *M*₀ = {{*a*}*,* {*a, b*}}*;*
- (2) *M*₁ = {{*a, b*}*,* {*a, c*}*,* {*b, c*}}*.*
- *It is clear that:*
	- (1) (X, \mathcal{M}_0) *is GBT*₀ *but not GBT*₁*.*
	- (2) (X, \mathcal{M}_1) *is GBT*₁ *but not GBT*₂*.*

Theorem 4.2. *A generalized base space* (X, \mathcal{M}) *is* GBT_0 *if and only if for each pair of distinct* $points x, y \in X$ *,* $c_M(\{x\}) \neq c_M(\{y\})$.

- *Proof.* (\Rightarrow) Let (X, \mathcal{M}) be *GBT*₀ and $x \neq y$ in *X*. Then there exists an *M*-open set *B* containing one of them but not the other. Without loss of generality, we assume that $x \in B \not\ni y$. It follows that $(X \setminus B) \in \mathcal{M}^c$ and $y \in (X \setminus B) \not\ni x$. So we have that $c_{\mathcal{M}}(\{y\}) \subset (X \setminus B)$ and therefore $x \notin c_{\mathcal{M}}(\{y\})$. But $x \in c_{\mathcal{M}}(\{x\})$, hence $c_{\mathcal{M}}(\{x\}) \neq c_{\mathcal{M}}(\{y\})$.
- (←) Suppose that $c_{\mathcal{M}}(\lbrace x \rbrace) \neq c_{\mathcal{M}}(\lbrace y \rbrace)$. If the space (X, \mathcal{M}) is not *GBT*₀, then there would exist $x, y \in X$ with $x \neq y$ such that either
	- (*i*) no $U \in \mathcal{M}$ such that $x \in U \not\ni y$ or $y \in U \not\ni x$.

or

(*ii*) every *M*-open set in *X* containing both *x* and *y*.

Case (*i*) implies that $\forall U \in \mathcal{M}$, the *M*-closed set $(X \setminus U)$ containing both *x* and *y*. Case (*ii*) implies that every *M*-closed set does not contain *x* or *y*. In either case, we have that $c_M(\lbrace x \rbrace) = c_M(\lbrace y \rbrace)$, which is a contradiction.

$$
\Box
$$

Theorem 4.3. *A generalized base space* (X, \mathcal{M}) *is GBT*₁ *if for any point* $x \in X$ *,* $\{x\}$ *is closed.*

Proof. Suppose that $\{x\}$ is *M*-closed for every $x \in X$. Let $x, y \in X$ with $x \neq y$. Then by assumption, $\{x\}^c = X \setminus \{x\}$ is a M-open set containing y but not x. Similarly $\{y\}^c = X \setminus \{y\}$ is a *M*-open set containing *x* but not *y*. Hence, (X, \mathcal{M}) is GBT_1 .

Although the converse of **Theorem 4.3** is true in topological and generalized topological setting, it is need not true in generalized base space setting. The following is a counterexample.

Example 4.4. Let $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a\}, \{b\}, \{c\}, \{d\}\}\$. Then one can note that (X, \mathcal{M}) *is* GBT_1 *but for each* $x \in X$ *, the subset* $\{x\}$ *is not closed.*

Before providing more important results concerning preserving of separation axioms, we need the following definition:

Definition 4.2. A function $f : (X, \mathcal{M}_1) \longrightarrow (Y, \mathcal{M}_2)$ is said to be $(\mathcal{M}_1, \mathcal{M}_2)$ -open if $f^{\rightarrow}(A) \in \mathcal{M}_2$, for any $A \in \mathcal{M}_1$, where $f^{\rightarrow}(A) = \{f(a) : a \in A\}$.

Theorem 4.5. *If* $f : (X, \mathcal{M}_1) \longrightarrow (Y, \mathcal{M}_2)$ *is an injective and* $(\mathcal{M}_1, \mathcal{M}_2)$ *-open mapping of a GBT*₂*-space* (X, \mathcal{M}_1) *onto a generalized base space* (Y, \mathcal{M}_2) *, then* (Y, \mathcal{M}_2) *is GBT*₂*.*

Proof. Let *a* and *b* by any distinct points in *Y* . Bijectivity of the mapping *f* implies that there is a pair of distinct points *x* and *y* in *X* with $x = f(a)$ and $y = f(b)$. Since (X, \mathcal{M}_1) is GBT_2 , then there is a disjoint \mathcal{M}_1 -open sets *A* and *B* with $a \in A$ and $b \in B$. Since *f* is open and injective, then *f*(*A*) and *f*(*B*) are two disjoint *M*₂-open sets with $x \in f(A)$ and $y \in f(B)$. Consequently (Y, M_2) is *GBT*2. \Box

Corollary 4.6. *Let* $f : (X, \mathcal{M}_1) \longrightarrow (Y, \mathcal{M}_2)$ *be an* $(\mathcal{M}_1, \mathcal{M}_2)$ *-open injective mapping of a* $GBT_1(resp., GBT_0)$ *-space* (X, \mathcal{M}_1) *onto a generalized base space* (Y, \mathcal{M}_2) *. Then* (Y, \mathcal{M}_2) *is* $GBT_1(resp., GBT_0)$ *.*

Proof. Follows from **Theorem 4.5**.

Definition 4.3. A generalized base space (X, \mathcal{M}) is said to be regular if for each *M*-closed set *F* in *X* and each point $x \in X$ not in *F*, there exist two disjoint *M*-open sets, *G* and *H* such that $x \in G$ and $F \subseteq H$.

Theorem 4.7. *If* (X, M) *is a regular generalized base space, then for each* $x \in X$ *and each* M -open *set U containing x, there exists an M-open set G such that* $x \in G \subseteq c_M(G) \subseteq U$.

Proof. Since $U \in \mathcal{M}$, then $X \setminus U$ is an *M*-closed set not containing *x* and therefore there exist two disjoint *M*-open sets *G* and *H* such that $x \in G$ and $X \setminus U \subseteq H$. So $G \subseteq X \setminus H \subseteq U$. By **Lemma 2.2** and **Proposition 2.1**, $c_M(G) \subseteq c_M(X \backslash H) = X \backslash H \subseteq U$. Thus $x \in G \subseteq c_M(G) \subseteq U$, as asserted. asserted.

The converse of **Theorem 4.7** is not true in general. Let us consider the following example.

[Exa](#page-2-1)mple 4.8. Let $X = \{a, b, c, d\}$ $X = \{a, b, c, d\}$ $X = \{a, b, c, d\}$ and $\mathcal{M} = \{X\}$. Since $c_{\mathcal{M}}(X) = X$, then $x \in c_{\mathcal{M}}(X) \subseteq X$, for *each x ∈ X. But* (*X,M*) *is not regular, since the only M-open set is X and the only M-closed set is ϕ.*

Proposition 4.1. *Every regular GBT*0*-space is GBT*2*.*

Proof. The proof is the same as in topological setting.

Definition 4.4. A generalized base space (X, M) is said to be GBT_3 if and only if it is both regular and *GBT*1.

Proposition 4.2. *Every GBT*³ *is GBT*2*.*

Proof. This is a consequence of **Proposition 4.1**.

The converse of **Propositions 4.1** and **4.2** is not true in general. Let us consider the following example.

Ex[a](#page-5-0)mple 4.9. Let $X = \{a, b, c\}$ and $\mathcal{M} = \{\{a\}, \{b\}, \{c\}, \{a, b\}\}\$. It clear that (X, \mathcal{M}) is GBT_2 . The collection of M-closed sets is $\mathcal{M}^c = \{\{b,c\}, \{a,c\}, \{a,b\}, \{c\}\}\.$ It is clear that (X, \mathcal{M}) is not *regular, because for a M-closed [set](#page-5-0) {b, c} [whic](#page-5-1)h does not contain the point a there is no two disjoint M-open sets containing the M-closed set {b, c} and the point a respectively.*

Definition 4.5. A generalized base space (X, \mathcal{M}) is said to be normal if for each pair of disjoint *M*-closed sets *A* and *B*, there exist two disjoint *M*-open sets, *G* and *H* such that $A \in G$ and $B \subseteq H$.

 \Box

 \Box

 \Box

It is known that if *M* is a generalized topology on *X* with $X \notin M$, then the generalized topological space (X, \mathcal{M}) is normal $[[4],$ **Proposition 2.1**]. But in the generalized base setting, this fact is not true in general. To asset that we give the following example:

Example 4.10. Let $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a, b, c\}, \{b, c, d\}\}\$. Then the collection of $\mathcal{M}\text{-closed}$ *sets is* $\mathcal{M}^c = \{\{d\}, \{a\}\}\$ [.](#page-7-3) The generalized base space (X, \mathcal{M}) is not normal, since the disjoint *M-closed sets {d} and {a} are not contained in two disjoint M-open sets.*

Theorem 4.11. *If* (*X,M*) *is a normal generalized base space, then for each M-closed F and each M*-open set *U* containing *F*, there exists an *M*-open set *G* such that $F \subseteq G \subseteq c_M(G) \subseteq U$.

Proof. Since $U \in \mathcal{M}$, then both $X \setminus U$ and *F* are disjoint *M*-closed sets. By normality of (X, \mathcal{M}) , there exist two disjoint *M*-open sets *G* and *H* such that $F \in G$ and $X \setminus U \subseteq H$. So $G \subseteq X \setminus H \subseteq U$. By Lemma 2.2 and Proposition 2.1, $c_M(G) \subseteq c_M(X \backslash H) = X \backslash H \subseteq U$. Thus $F \subseteq G \subseteq c_M(G) \subseteq$ *U*, as asserted.

The converse of **Theorem 4.11** is not true in general. Let us consider the following example.

Example 4.12. Let $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a\}, \{b\}, \{c\}, \{d\}, X\}$. Then the collection of Mclosed sets is $\mathcal{M}^c = \{\{a,b,c\},\{a,b,d\},\{a,c,d\},\{b,c,d\},\phi\}.$ For $\phi \subset X$, there exists an M-open set, say $\{a\}$ such that $\phi \subset \{a\} \subset c_{\mathcal{M}}(\{a\}) \subseteq X$. But (X, \mathcal{M}) is not normal, since the disjoint M *-closed sets* ϕ *and* $\{a, b, c\}$ *are not contained in any two disjoint* M *-open sets.*

Definition 4.6. A generalized base space (X, \mathcal{M}) is said to be T_4 if and only if it is both normal and *GBT*1.

We have seen from the above results, that each *GBT*^{*i*}-space is is *GBT*^{*i*}_{*-*1}-space for $i = 1, 2, 3$. But for $i = 4$, the implication is not true in general, as we can see from the following example:

Example 4.13. Let $X = \{a, b, c, d\}$ and $\mathcal{M} = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{c, d\}\}\$. The collection of M-closed sets is $\mathcal{M}^c = \{\{b,c,d\},\{a,c,d\},\{a,b,d\},\{a,b,c\},\{c,d\},\{a,b\}\}\.$ It is clear that (X,\mathcal{M}) is *T*⁴ *but it is not regular, because for a M-closed set {b, c, d} which does not contain the point a there is no two disjoint M-open sets containing the M-closed set {b, c, d} and the point a respectively.*

5 Conclusion

It has been observed that the concept of a generalized base space, if unrestricted, is to general for many purpose. In the present work, some facts about generalized base spaces has been studied. Some separations axioms in generalized base spaces has been studied. Also, some characterizations of GBT_i -spaces for $i = 0, 1, 2, 3, 4$ are obtained and some relations among these spaces are established. We studied some results concerning separation axioms which are true in general topology, but it is not true in the generalized base spaces.

Acknowledgement

The authors are thankful to the reviewers for their valuable comments and suggestions.

Competing Interests

Authors have declared that no competing interests exist.

References

- [1] Mashhour AS, Allam AA, Mahmoud FS, Khedr FH. On supratopological space. Indian J. Pure Appl. Math. 1983;14(4):502-510.
- [2] Maki H, Umehara J, Noiri T. Every topological space is pre-*T*1*/*2. Mem. Fac. Sci. Kochi. Univ. Ser. A Math. 1996;17:33-42.
- [3] Csàszàr A. Generalized topology, generalized continuity. Acta Math. Hungar. 2002;96:351-357.
- [4] Csàszàr A. Weak structures. Acta Math. Hungar. 2011;131:193-195.
- [5] Popa V, Noiri T. On M-continuous functions. Anal. Univ. "Dunarea de Jos" Galati, Ser. Mat. Fiz. Mec. Teor., Fasc. II. 2000;18:31-41.
- [6] Al-Omari A, Noiri T. A unified theory of generalized closed sets in weak structures. Acta Math. Hungar. 2012;135:174-183.
- [7] Ekici E. On weak structures due to Csàszàr. Acta Math. Hungar. 2012;134:565-570.
- [8] El-Saady K. Generalized topological representation for complete join-semilattices. Acta Math. Hungar. 2014;143(2):287-297.
- [9] Navaneethakrishnan M, Thamaraiselvi S. On weak structures of Cs`asz`ar. Acta Math. Hungar. 2012;137:224-229.
- [10] Navaneethakrishnan M, Thamaraiselvi S. On some subsets defined with respect to weak structures. Acta Math. Hungar. 2013;139:11-18.
- [11] Zahran AM, El-Saady K, Ghareeb A. Modification of weak structures via hereditary classes. Applied Math. Lett. 2012;25:869-872.
- [12] Zakari AH, Ghareeb A, Omran S. On soft weak structures. Soft Comput; 2016. DOI: 10.1007/s00500-016-2136-8
- [13] Ern´e M. General stone duality. Topology and its Applications. 2004;137:125-158.
- [14] Avila J, Molina F. Generalized weak structures. International Math. Forum. 2012;7:2589-2595. ´
- [15] Csàszàr A. Extremally disconnected generalized topologies. Annales Univ. Sci. Budapest, Sectio Math. 2004;47:91-96.
- [16] Cs`asz`ar A. Further remarks on the formula for ` *γ*-interior. Acta Math. Hungar. 2006;113:325- 332.
- [17] Cs`asz`ar A. Remarks on quasi-topologies. Acta Math. Hungar. 2008;119:197-200. `
- [18] Cs`asz`ar A. Generalized open sets in generalized topologies. Acta Math. Hungar. 2005;106:53- ` 66.

 $\mathcal{L}=\{1,2,3,4\}$, we can consider the constant of the constant $\mathcal{L}=\{1,2,3,4\}$ *⃝*c *2016 El-Saady and Al-Nabbat; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.*

Peer-review history:

The peer review history for this [paper can be accessed here \(Please copy paste](http://creativecommons.org/licenses/by/4.0) the total link in your browser address bar)

http://sciencedomain.org/review-history/14973